Table of Contents
ISRN Endocrinology
Volume 2011, Article ID 519371, 8 pages
http://dx.doi.org/10.5402/2011/519371
Research Article

Berberine Improves Glucose Homeostasis in Streptozotocin-Induced Diabetic Rats in Association with Multiple Factors of Insulin Resistance

1National Research Council Canada, Institute for Nutrisciences and Health, Charlottetown, PE, Canada C1A 4P3
2Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China
3Institute of Public Health Inspection, Heilongjiang Province Center for Disease Control and Prevention, Harbin, Heilongjiang 150036, China
4Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3

Received 3 August 2011; Accepted 5 September 2011

Academic Editor: C. Fürnsinn

Copyright © 2011 Yanfeng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Birdsall and G. S. Kelly, “Berberine: therapeutic potential of an alkaloid found in several medicinal plants,” Alternative Medicine Review, vol. 2, no. 2, pp. 94–103, 1997. View at Google Scholar · View at Scopus
  2. S. H. Leng, F. E. Lu, and L. J. Xu, “Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion,” Acta Pharmacologica Sinica, vol. 25, no. 4, pp. 496–502, 2004. View at Google Scholar · View at Scopus
  3. M. Zhang, X. Y. Lv, J. Li, Z. G. Xu, and L. Chen, “The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model,” Experimental Diabetes Research, vol. 2008, p. 704045, 2008. View at Google Scholar · View at Scopus
  4. J. Y. Zhou, S. W. Zhou, K. B. Zhang et al., “Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats,” Biological and Pharmaceutical Bulletin, vol. 31, no. 6, pp. 1169–1176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Wang, T. Campbell, B. Perry, C. Beaurepaire, and L. Qin, “Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats,” Metabolism, vol. 60, pp. 298–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Google Scholar · View at Scopus
  8. H. A. Jung, B. S. Min, T. Yokozawa, J. H. Lee, Y. S. Kim, and J. S. Choi, “Anti-Alzheimer and antioxidant activities of coptidis rhizoma alkaloids,” Biological and Pharmaceutical Bulletin, vol. 32, no. 8, pp. 1433–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. S. Hsieh, W. H. Kuo, T. W. Lin et al., “Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells,” Journal of Agricultural and Food Chemistry, vol. 55, no. 25, pp. 10437–10445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Q. Tang, W. Wei, L. M. Chen, and S. Liu, “Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats,” Journal of Ethnopharmacology, vol. 108, no. 1, pp. 109–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Hwang, C. J. Wang, F. P. Chou et al., “Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver,” Archives of Toxicology, vol. 76, no. 11, pp. 664–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Jeong, K. C. Hsu, J. W. Lee et al., “Berberine suppresses proinflammatory responses through AMPK activation in macrophages,” American Journal of Physiology, vol. 296, no. 4, pp. E955–E964, 2009. View at Publisher · View at Google Scholar
  13. B. H. Choi, I. S. Ahn, Y. H. Kim et al., “Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte,” Experimental and Molecular Medicine, vol. 38, no. 6, pp. 599–605, 2006. View at Google Scholar · View at Scopus
  14. K. Srinivasan, B. Viswanad, L. Asrat, C. L. Kaul, and P. Ramarao, “Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening,” Pharmacological Research, vol. 52, no. 4, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Tripathy, P. Mohanty, S. Dhindsa et al., “Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects,” Diabetes, vol. 52, no. 12, pp. 2882–2887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. K. M. Huffman, S. H. Shah, R. D. Stevens et al., “Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women,” Diabetes Care, vol. 32, no. 9, pp. 1678–1683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. R. Kashyap, A. G. Ioachimescu, H. L. Gornik et al., “Lipid-induced insulin resistance is associated with increased monocyte expression of scavenger receptor CD36 and internalization of oxidized LDL,” Obesity, vol. 17, no. 12, pp. 2142–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Belfort, L. Mandarino, S. Kashyap et al., “Dose-response effect of elevated plasma free fatty acid on insulin signaling,” Diabetes, vol. 54, no. 6, pp. 1640–1648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Gallwitz, “GLP-1 agonists and dipeptidyl-peptidase IV inhibitors,” Handbook of Experimental Pharmacology, vol. 203, pp. 53–74, 2011. View at Publisher · View at Google Scholar
  20. D. Lamers, S. Famulla, N. Wronkowitz et al., “Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome,” Diabetes, vol. 60, no. 7, pp. 1917–1925, 2011. View at Google Scholar
  21. Y. Kirino, Y. Sato, T. Kamimoto, K. Kawazoe, K. Minakuchi, and Y. Nakahori, “Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: a streptozotocin-induced model using wild-type and DPP4-deficient rats,” Journal of Endocrinology, vol. 200, no. 1, pp. 53–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Montalibet and B. P. Kennedy, “Therapeutic strategies for targeting PTP1B in diabetes,” Drug Discovery Today, vol. 2, no. 2, pp. 129–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Boden, “Free fatty acids, insulin resistance, and type 2 diabetes mellitus,” Proceedings of the Association of American Physicians, vol. 111, no. 3, pp. 241–248, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Boden and X. Chen, “Effects of fat on glucose uptake and utilization in patients with non- insulin-dependent diabetes,” Journal of Clinical Investigation, vol. 96, no. 3, pp. 1261–1268, 1995. View at Google Scholar · View at Scopus
  25. G. Paolisso, P. A. Tataranni, J. E. Foley, C. Bogardus, B. V. Howard, and E. Ravussin, “A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM,” Diabetologia, vol. 38, no. 10, pp. 1213–1217, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Delarue and C. Magnan, “Free fatty acids and insulin resistance,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 2, pp. 142–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. H. Unger, “Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications,” Diabetes, vol. 44, no. 8, pp. 863–870, 1995. View at Google Scholar · View at Scopus
  28. Y. S. Lee, W. S. Kim, K. H. Kim et al., “Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states,” Diabetes, vol. 55, no. 8, pp. 2256–2264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  31. T. Tzanavari, P. Giannogonas, and K. P. Karalis, “TNF-α and obesity,” Current Directions in Autoimmunity, vol. 11, pp. 145–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. F. White, and B. M. Spiegelman, “IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance,” Science, vol. 271, no. 5249, pp. 665–668, 1996. View at Google Scholar · View at Scopus
  33. V. Aguirre, T. Uchida, L. Yenush, R. Davis, and M. F. White, “The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307,” The Journal of Biological Chemistry, vol. 275, no. 12, pp. 9047–9054, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Aguirre, E. D. Werner, J. Giraud, Y. H. Lee, S. E. Shoelson, and M. F. White, “Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action,” The Journal of Biological Chemistry, vol. 277, no. 2, pp. 1531–1537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Paz, R. Hemi, D. LeRoith et al., “A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation,” The Journal of Biological Chemistry, vol. 272, no. 47, pp. 29911–29918, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Jiang, P. Liu, X. Wu et al., “Berberine attenuates lipopolysaccharide-induced extracelluar matrix accumulation and inflammation in rat mesangial cells: involvement of NF-κB signaling pathway,” Molecular and Cellular Endocrinology, vol. 331, no. 1, pp. 34–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Boden, “Obesity and free fatty acids,” Endocrinology and Metabolism Clinics of North America, vol. 37, no. 3, pp. 635–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Boden, “Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver,” Current Diabetes Reports, vol. 6, no. 3, pp. 177–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Gerich, “Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus,” Mayo Clinic Proceedings, vol. 78, no. 4, pp. 447–456, 2003. View at Google Scholar · View at Scopus
  40. K. Nakano, G. Hasegawa, M. Fukui et al., “Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes,” Endocrine Journal, vol. 57, no. 5, pp. 423–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Chen, Y. Zhang, and C. Huang, “Berberine inhibits PTP1B activity and mimics insulin action,” Biochemical and Biophysical Research Communications, vol. 397, no. 3, pp. 543–547, 2010. View at Publisher · View at Google Scholar · View at Scopus