Table of Contents
ISRN Materials Science
Volume 2011, Article ID 535872, 8 pages
http://dx.doi.org/10.5402/2011/535872
Research Article

Structural Arrangement and Properties of Spicules in Glass Sponges

1A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Vladivostok 690041, Russia
2Fareastern Federal University, Vladivostok 690091, Russia

Received 1 April 2011; Accepted 22 May 2011

Academic Editors: K. Hokamoto and S. Sombra

Copyright © 2011 Anatoliy L. Drozdov and Alexander A. Karpenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Cattaneo-Vietti, G. Bavastrello, C. Cerrano et al., “Optical fibers in an Antarctic sponge,” Nature, vol. 383, pp. 397–398, 1996. View at Google Scholar
  2. A. L. Drozdov, Biology for Physicists and Chemists, Far Eastern University Press, Vladivostok, Russian, 2005.
  3. H. Ehrlich, A. V. Ereskovskii, A. L. Drozdov et al., “A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix,” Russian Journal of Marine Biology, vol. 32, no. 3, pp. 186–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ehrlich and H. Worch, “Sponges as natural composites: from biomimetic potential to development of new biomaterials,” in Porifera Research: Biodiversity, Innovation and Sustainability, M. R. Custodio, G. Lobo-Hajdu, E. Hajdu, and G. Muricy, Eds., pp. 303–312, Museu Nacional, Rio de Janeiro, Brasil, 2007. View at Google Scholar
  5. H. Ehrlich, Biological materials. Invertebrates, Springer, Dordrecht, Netherlands, 2010.
  6. X.-H. Wang, J.-H. Li, L. Qiao et al., “Structure and characteristics of giant spicules of the deep sea hexactinellid sponges of the genus Monorhaphis (Hexactinellida: Amphidiscosida: Monorhaphididae),” Acta Zoologica Sinica, vol. 53, no. 3, pp. 557–569, 2007. View at Google Scholar
  7. X. Wang, S. Hu, L. Gan, M. Wiens, and W. E. G. Müller, “Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success,” Terra Nova, vol. 22, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. N. Kul’chin, A. V. Bezverbny, O. A. Bukin et al., “Optical and nonlinear optical properties of sea glass sponge spicules,” in Biosilica in Evolution, Morphogenesis, and Nanobiology, Progress in Molecular and Subcellular Biology, Marine Molecular Biotechnology, W. E. G. Müller and M. A. Grachev, Eds., vol. 47, pp. 315–340, Springer, Berlin, Germany, 2009. View at Google Scholar
  9. H. M. Reiswig, “Classification and phytogeny of Hexactinellida (Porifera),” Canadian Journal of Zoology, vol. 84, no. 2, pp. 195–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. R. Tabachnick and H. M. Reiswig, “Dictionary of Hexactinellida,” in Systema Porifera: A Guide to the Classification of Sponges, J. N. A. Hooper and R. W. M. van Soest, Eds., pp. 1224–1229, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2002. View at Google Scholar
  11. J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver, and G. Chen, “Biological glass fibers: correlation between optical and structural properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3358–3363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, “Materials science: skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale,” Science, vol. 309, no. 5732, pp. 275–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Drozdov, O. A. Bukin, S. S. Voznesensky et al., “Symbiotic cyanobacteria in Hexactinellids,” Doklady Biological Sciences, vol. 420, no. 4, pp. 192–194, 2008. View at Google Scholar
  14. K. R. Tabachnick, “Adaptation of the Hexactinnelid sponges to deep-sea life,” in Fossil and Recent Sponges, J. Reitner and H. Keupp, Eds., pp. 378–386, Berlin, 1991. View at Google Scholar
  15. W. E. G. Müller, A. Krasko, G. Le Pennec et al., “Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein—collagen—myotrophin,” Progress in Molecular & Subcellular Biology, vol. 33, pp. 195–222, 2003. View at Google Scholar
  16. W. E. G. Müller, C. Eckert, K. Kropf et al., “Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies,” Cell and Tissue Research, vol. 329, no. 2, pp. 363–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. W. E. G. Müller, J. Li, H. C. Schröder, L. Qiao, and X. Wang, “The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review,” Biogeosciences, vol. 4, no. 2, pp. 219–232, 2007. View at Google Scholar · View at Scopus
  18. K. Shimizu, J. Cha, G. D. Stucky, and D. E. Morse, “Silicatein α: cathepsin L-like protein in sponge biosilica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6234–6238, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Cha, K. Shimizu, Y. Zhou et al., “Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 361–365, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. H. C. Schröder, A. Boreiko, M. Korzhev et al., “Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula,” Journal of Biological Chemistry, vol. 281, no. 17, pp. 12001–12009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Bourhill, L. O. Pålsson, I. D. W. Samuel, I. C. Sage, I. D. H. Oswald, and J. P. Duignan, “The solid-state photoluminescent quantum yield of triboluminescent materials,” Chemical Physics Letters, vol. 336, no. 3-4, pp. 234–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Sage and G. Bourhill, “Triboluminescent materials for structural damage monitoring,” Journal of Materials Chemistry, vol. 11, no. 2, pp. 231–245, 2001. View at Publisher · View at Google Scholar · View at Scopus