Table of Contents
ISRN Ecology
Volume 2011 (2011), Article ID 568723, 17 pages
http://dx.doi.org/10.5402/2011/568723
Research Article

Modeling Agroecosystem Services under Simulated Climate and Land-Use Changes

1USDA-ARS, 803 Iowa Avenue, Morris, MN 56267, USA
2Land Stewardship Project, 821 E 35th Street, Minneapolis, MN 55407, USA

Received 15 September 2011; Accepted 31 October 2011

Academic Editors: A. M. Anesio and G. Zotz

Copyright © 2011 Abdullah A. Jaradat and George Boody. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ecological functioning of the intensive, homogeneous agroecosystems in the Chippewa River Watershed (CRW), MN, USA, can be improved by reducing soil erosion, runoff, and nutrient leaching. These ecosystem services can be achieved through increased perennials in crop rotations to diversify land use and sustain carbon sequestration. We calibrated, validated, and used APSIM software to simulate the effect of 100 yrs each of historical and future climate change scenario (IPCC-A2) on biophysical processes in representative soil types of the predominant farming systems in CRW. The interrelationships between crop rotations, soil types, climate variables, and ecosystem services indicated that not all objectives of sustainable agro-ecosystem are compatible, and tradeoffs among them are necessary. Site-specific and diversified crop rotations that comply with the environmental constraints of climate and soils could lead to more efficient implementation of strategies to improve ecosystem services in the watershed if current management practices of high external inputs and tillage persisted.