Table of Contents
ISRN Mathematical Analysis
Volume 2011 (2011), Article ID 621901, 14 pages
http://dx.doi.org/10.5402/2011/621901
Research Article

An Iterative Approximation Method for a Common Fixed Point of Two Pseudocontractive Mappings

Department of Mathematics, University of Botswana, Private Bag 00704, Gaborone, Botswana

Received 24 January 2011; Accepted 22 March 2011

Academic Editors: G. L. Karakostas, G. Mantica, O. Miyagaki, N. Shioji, and C. Zhu

Copyright © 2011 Habtu Zegeye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Kato, “Nonlinear semigroups and evolution equations,” Journal of the Mathematical Society of Japan, vol. 19, pp. 508–520, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. C. E. Chidume and S. A. Mutangadura, “An example of the Mann iteration method for Lipschitz pseudocontractions,” Proceedings of the American Mathematical Society, vol. 129, no. 8, pp. 2359–2363, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. S. Ishikawa, “Fixed points by a new iteration method,” Proceedings of the American Mathematical Society, vol. 44, pp. 147–150, 1974. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. L. Qihou, “The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings,” Journal of Mathematical Analysis and Applications, vol. 148, no. 1, pp. 55–62, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. W. R. Mann, “Mean value methods in iteration,” Proceedings of the American Mathematical Society, vol. 4, pp. 506–510, 1953. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. S. Reich, “Weak convergence theorems for nonexpansive mappings in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 67, no. 2, pp. 274–276, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. C. E. Chidume and N. Shahzad, “Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings,” Nonlinear Analysis. Theory, Methods & Applications, vol. 62, no. 6, pp. 1149–1156, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. C. E. Chidume, H. Zegeye, and N. Shahzad, “Convergence theorems for a common fixed point of a finite family of nonself nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2005, no. 2, pp. 233–241, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the American Mathematical Society, vol. 73, pp. 957–961, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. H. Iiduka and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings,” Nonlinear Analysis. Theory, Methods & Applications, vol. 61, no. 3, pp. 341–350, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S. Ishikawa, “Fixed points and iteration of a nonexpansive mapping in a Banach space,” Proceedings of the American Mathematical Society, vol. 59, no. 1, pp. 65–71, 1976. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. P.-L. Lions, “Approximation de points fixes de contractions,” Comptes Rendus de l'Académie des Sciences. Séries A et B, vol. 284, no. 21, pp. A1357–A1359, 1977. View at Google Scholar · View at Zentralblatt MATH
  15. C. Martinez-Yanes and H.-K. Xu, “Strong convergence of the CQ method for fixed point iteration processes,” Nonlinear Analysis, Theory, Methods and Applications, vol. 64, no. 11, pp. 2400–2411, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12, pp. 3641–3645, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. H.-K. Xu, “Strong convergence of an iterative method for nonexpansive and accretive operators,” Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 631–643, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. H. Zegeye and N. Shahzad, “Strong convergence theorems for a finite family of nonexpansive mappings and semigroups via the hybrid method,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 1, pp. 325–329, 2010. View at Publisher · View at Google Scholar
  19. A. Genel and J. Lindenstrauss, “An example concerning fixed points,” Israel Journal of Mathematics, vol. 22, no. 1, pp. 81–86, 1975. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. O. Güler, “On the convergence of the proximal point algorithm for convex minimization,” SIAM Journal on Control and Optimization, vol. 29, no. 2, pp. 403–419, 1991. View at Google Scholar
  21. R. Wittmann, “Approximation of fixed points of nonexpansive mappings,” Archiv der Mathematik, vol. 58, no. 5, pp. 486–491, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. H. Zegeye and N. Shahzad, “Viscosity approximation methods for a common fixed point of finite family of nonexpansive mappings,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 155–163, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. H. Zegeye, N. Shahzad, and T. Mekonen, “Viscosity approximation methods for pseudocontractive mappings in Banach spaces,” Applied Mathematics and Computation, vol. 185, no. 1, pp. 538–546, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. W. Takahashi and K. Zembayashi, “Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 1, pp. 45–57, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society. Second Series, vol. 66, no. 1, pp. 240–256, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994. View at Google Scholar · View at Zentralblatt MATH