Abstract

We present some fixed point theorems and existence theorems of maximal elements in FC-space from which we derive several coincidence theorems. Applications of these results to generalized equilibrium problems and minimax theory will be given. Our results improve and generalize some recent results.

1. Introduction and Preliminaries

It is well known that many fixed point theorems, coincidence theorems, and maximal elements have been established in topological vector spaces, ๐ป-spaces, and ๐บ-convex spaces by many authors (see [1โ€“11]). In most of the known existence results of maximal elements and fixed point theorems, the convexity assumptions play a crucial role which strictly restricts the applicable area of these results. In fact, what we meet may not have convexity structure. Hence it is quite reasonable and valuable to study fixed point theorems, coincidence theorems, and maximal elements in general topological spaces without convexity structure.

In this paper, we will continue to study some problems in nonlinear analysis in ๐น๐ถ-spaces. Some fixed point theorems and existence theorems of maximal elements are proved under noncompact setting of ๐น๐ถ-spaces. We will apply these results to give some coincidence theorems. More specifically, the application of these results to generalized equilibrium problems and minimax theory will be given in ๐น๐ถ-spaces. Our results improve and generalize the corresponding results in [1, 2, 12โ€“14].

Let ๐‘Œ be a nonempty set. We denote by 2๐‘Œ and โŸจ๐‘ŒโŸฉ the family of all subsets of ๐‘Œ and the family of all nonempty finite subsets of ๐‘Œ, respectively. For each ๐ดโˆˆโŸจ๐‘‹โŸฉ, we denote by |๐ด| the cardinality of ๐ด. Let ฮ”๐‘› be the standard n-dimensional simplex with vertices {๐‘’0,โ€ฆ,๐‘’๐‘›}. If ๐ฝ is a nonempty subset of {0,1,โ€ฆ,๐‘›}, we denote by ฮ”๐ฝ the convex hull of the vertices {๐‘’๐‘—โˆถ๐‘—โˆˆ๐ฝ}.

Let ๐‘‹ and ๐‘Œ be two sets, and, ๐‘‡โˆถ๐‘‹โ†’2๐‘Œ be a set-valued mapping. We will use the following notations in the following material: (i)๐‘‡(๐‘ฅ)={๐‘ฆโˆˆ๐‘Œโˆถ๐‘ฆโˆˆ๐‘‡(๐‘ฅ)},(ii)โ‹ƒ๐‘‡(๐ด)=๐‘ฅโˆˆ๐ด๐‘‡(๐‘ฅ),(iii)๐‘‡โˆ’1(๐‘ฆ)={๐‘ฅโˆˆ๐‘‹โˆถ๐‘ฆโˆˆ๐‘‡(๐‘ฅ)},(iv)๐‘‡โˆ’1โ‹‚(๐ต)={๐‘ฅโˆˆ๐‘‹โˆถ๐‘‡(๐‘ฅ)๐ตโ‰ โˆ…}.

For topological spaces ๐‘‹ and ๐‘Œ, a subset ๐ด of ๐‘‹ is said to be compactly open (resp., compactly closed) if for each nonempty compact subset ๐พ of ๐‘‹, ๐ดโ‹‚๐พ is open (resp., closed) in ๐พ. The compact closure of ๐ด and the compact interior of ๐ด (see [5]) are defined, respectively, by ๎™๎š๐‘cl๐ด={๐ตโŠ‚๐‘‹โˆถ๐ดโŠ‚๐ตand๐ตiscompactlyclosedin๐‘‹},๐‘int๐ด={๐ตโŠ‚๐‘‹โˆถ๐ตโŠ‚๐ดand๐ตiscompactlyopenin๐‘‹}.(1.1)

It is easy to see that ๐‘cl(๐‘‹โงต๐ด)=๐‘‹โงต๐‘int๐ด,int๐ดโŠ‚๐‘int๐ดโŠ‚๐ด,๐ดโŠ‚๐‘cl๐ดโŠ‚cl๐ด, ๐ด is compactly open in ๐‘‹ if and only if ๐ด=๐‘int๐ด. For each nonempty compact subset ๐พ of ๐‘‹, โ‹‚๐‘cl๐ด๐พ=cl๐พโ‹‚(๐ด๐พ) and โ‹‚๐‘int๐ด๐พ=int๐พโ‹‚(๐ด๐พ), where cl๐พโ‹‚(๐ด๐พ) (resp., int๐พโ‹‚(๐ด๐พ)) denotes the closure (resp., interior) of ๐ดโ‹‚๐พ in ๐พ.

A set-valued mapping ๐‘‡โˆถ๐‘‹โ†’2๐‘Œ is said to be transfer compactly open valued on ๐‘‹ (see [5]) if for each ๐‘ฅโˆˆ๐‘‹ and ๐‘ฆโˆˆ๐‘‡(๐‘ฅ), there exists ๐‘ฅโ€ฒโˆˆ๐‘‹ such that ๐‘ฆโˆˆ๐‘int๐‘‡(๐‘ฅ๎…ž). It is clear that each transfer open valued correspondence is transfer compactly open valued. The inverse is not true in general.

Throughout this paper, all topological spaces are assumed to be Hausdorff.

Definition 1.1 (see [7]). (๐‘‹,๐œ‘๐‘) is said to be an ๐น๐ถ-space if ๐‘‹ is a topological space, and for each ๐‘={๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›}โˆˆโŸจ๐‘‹โŸฉ, where some elements in ๐‘ may be the same, there exists a continuous mapping ๐œ‘๐‘โˆถฮ”๐‘›โ†’๐‘‹. A subset ๐ท of (๐‘‹,๐œ‘๐‘) is said to be an ๐น๐ถ-subspace of ๐‘‹ if for each ๐‘={๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›}โˆˆโŸจ๐‘‹โŸฉ and for each {๐‘ฅ๐‘–0,โ€ฆ,๐‘ฅ๐‘–๐‘˜โ‹‚๐ท}โŠ‚๐‘, ๐œ‘๐‘(ฮ”๐‘˜)โŠ‚๐ท, where ฮ”๐‘˜=co({๐‘’๐‘–๐‘—โˆถ๐‘—=0,โ€ฆ,๐‘˜}) and co denotes convex hull.
In many recent papers (see [9, 11, 15]), one studies one or more of the following generalized equilibrium problems
Let ๐‘‹ be a convex subset of a topological vector space, let ๐‘ and, ๐‘‰ be nonempty sets and let ๐นโˆถ๐‘‹ร—๐‘โ†’2๐‘‰,๐ถโˆถ๐‘‹โ†’2๐‘‰ be set-valued mappings. Find ๐‘ฅ0โˆˆ๐‘‹ such that one of the following situations occurs:๐น(๐‘ฅ0,๐‘ง)โŠ†๐ถ(๐‘ฅ0) for all ๐‘งโˆˆ๐‘;๐น(๐‘ฅ0โ‹‚,๐‘ง)๐ถ(๐‘ฅ0)โ‰ โˆ… for all ๐‘งโˆˆ๐‘;๐น(๐‘ฅ0ฬธ,๐‘ง)โŠ†๐ถ(๐‘ฅ0) for all ๐‘งโˆˆ๐‘;๐น(๐‘ฅ0โ‹‚,๐‘ง)๐ถ(๐‘ฅ0)=โˆ… for all ๐‘งโˆˆZ.โ€‰

In this paper, we will try a unified approach for all these problems considering a (binary) relation ๐œŒ on 2๐‘‰ and looking for a point ๐‘ฅ0โˆˆ๐‘‹ such that ๐น(๐‘ฅ0,๐‘ง)๐œŒ๐ถ(๐‘ฅ0) for all ๐‘งโˆˆ๐‘.

Denote by ๐œŒ๐‘ the complementary relation of ๐œŒ, that is, for any ๐ด,๐ตโŠ‚๐‘‰, exactly one of the following assertions ๐ด๐œŒ๐ต,๐ด๐œŒ๐‘๐ต holds.

Since Fan [16] and Liu [17] extended the von Neumann-Sion principle to obtain two-function minimax inequalities, many such results involving two or more functions have appeared in the literature. We also obtain a very general minimax inequality of the following type: inf๐‘ฅโˆˆ๐‘‹โ„Ž(๐‘ฅ,๐‘ฅ)โ‰คsup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ฅ,๐‘ง)+sup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ฅ,๐‘ง),(1.2) which is, to the best of our knowledge, different from all the minimax inequalities known in the literature.

2. Fixed Points and Maximal Elements

In order to prove our main results, we need the following definition and lemmas.

Definition 2.1. Let (๐‘‹,๐œ‘๐‘) and (๐‘,๐œ‘โˆ—๐‘€) be two ๐น๐ถ-spaces. A set-valued mapping ๐‘‡โˆถ๐‘‹โ†’2๐‘ is said to be weakly-๐น๐ถ valued if for each ๐ด={๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›}โˆˆโŸจ๐‘‹โŸฉ,๐‘ฅโˆˆ๐œ‘๐‘(ฮ”๐‘›) and ๐ต={๐‘ง0,โ€ฆ,๐‘ง๐‘›}โˆˆโŸจ๐‘โŸฉ with ๐‘ง๐‘–โˆˆ๐‘‡(๐‘ฅ๐‘–)(๐‘–=0,โ€ฆ,๐‘›), we have โ‹‚๐œ‘๐‘‡(๐‘ฅ)โˆ—๐‘€(ฮ”๎…ž๐‘›)โ‰ โˆ…, where ฮ”๎…ž๐‘› denotes the standard n-dimensional simplex corresponding, ๐ต={๐‘ง0,โ€ฆ,๐‘ง๐‘›}โˆˆโŸจ๐‘โŸฉ.

Lemma 2.2 (see [10]). Let ๐‘‹ and ๐‘Œ be two topological spaces, and let ๐บโˆถ๐‘‹โ†’2๐‘Œ be a set-valued mapping. Then the following statements are equivalent: (i)๐บโˆ’1โˆถ๐‘Œโ†’2๐‘‹ is transfer compactly open valued, and for all ๐‘ฅโˆˆ๐‘‹,๐บ(๐‘ฅ) is nonempty;(ii)โ‹ƒ๐‘‹=๐‘ฆโˆˆ๐‘Œ๐‘int๐บโˆ’1(๐‘ฆ).

Theorem 2.3. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, ๐พ be a nonempty compact subset of ๐‘‹ and let ๐‘†,๐‘„โˆถ๐‘‹โ†’2๐‘‹ be set-valued mappings satisfying the following conditions: (i)for each ๐‘ฅโˆˆ๐‘‹ and ๐‘โˆˆโŸจ๐‘†(๐‘ฅ)โŸฉ,๐œ‘๐‘(ฮ”๐‘˜)โŠ†๐‘„(๐‘ฅ);(ii)โ‹ƒ๐‘‹=๐‘ฆโˆˆ๐‘‹๐‘int๐‘†โˆ’1(๐‘ฆ);(iii)there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎š๎€ฝโงต๐พโŠ†๐‘int๐‘†โˆ’1(๐‘ฆ)โˆถ๐‘ฆโˆˆ๐ฟ๐‘๎€พ.(2.1) Then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ฅโˆˆ๐‘„(๐‘ฅ).

Proof. Since โ‹ƒ๐พโŠ†๐‘ฆโˆˆ๐‘‹๐‘int๐‘†โˆ’1(๐‘ฆ) and ๐พ is a nonempty compact subset of ๐‘‹, there exists a finite set ๐‘={๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘›}โˆˆโŸจ๐‘‹โŸฉ such that ๐พ=๐‘›๎š๐‘–=1๐‘int๐‘†โˆ’1๎€ท๐‘ฆ๐‘–๎€ธ.(2.2) By condition (iii), there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎š๎€ฝโงต๐พโŠ†๐‘int๐‘†โˆ’1(๐‘ฆ)โˆถ๐‘ฆโˆˆ๐ฟ๐‘๎€พ.(2.3) It follows from (2.2) and ๐‘โŠ‚๐ฟ๐‘ that ๐ฟ๐‘๎™๎š๎€ฝ๐พโŠ†๐‘int๐‘†โˆ’1๎€พโŠ†๎š๎€ฝ(๐‘ฆ)โˆถ๐‘ฆโˆˆ๐‘๐‘int๐‘†โˆ’1(๐‘ฆ)โˆถ๐‘ฆโˆˆ๐ฟ๐‘๎€พ.(2.4) By (2.3) and (2.4), we have ๐ฟ๐‘โŠ†๎š๎€ฝ๐‘int๐‘†โˆ’1(๐‘ฆ)โˆถ๐‘ฆโˆˆ๐ฟ๐‘๎€พ.(2.5) Since ๐ฟ๐‘ is compact, there exists a finite set ๐‘€={๐‘ง0,โ€ฆ,๐‘ง๐‘š}โˆˆโŸจ๐ฟ๐‘โŸฉ such that ๐ฟ๐‘=๐‘š๎š๐‘–=0๎‚€๐‘int๐‘†โˆ’1๎€ท๐‘ง๐‘–๎€ธ๎™๐ฟ๐‘๎‚.(2.6) Since ๐ฟ๐‘ is also compact ๐น๐ถ-subspace of ๐‘‹, there exists a continuous mapping ๐œ‘๐‘€โˆถฮ”๐‘šโ†’๐‘‹ such that ๐œ‘๐‘€๎€ทฮ”๐ฝ๎€ธโŠ‚๐ฟ๐‘,โˆ€๐ฝโŠ‚{0,โ€ฆ,๐‘š}.(2.7) We may assume that {๐œ“๐‘–}๐‘š๐‘–=0 is the continuous partition of unity subordinated to the open covering {๐‘int๐‘†โˆ’1(๐‘ง๐‘–)โ‹‚๐ฟ๐‘}๐‘š๐‘–=0 such that(1)for each ๐‘–=0,โ€ฆ,๐‘š,๐œ“๐‘–โˆถ๐ฟ๐‘โ†’[0,1] is continuous;(2)for each ๐‘–=0,โ€ฆ,๐‘š and ๐‘ฅโˆˆ๐ฟ๐‘,๐œ“๐‘–(๐‘ฅ)โ‰ 0โŸน๐‘ฅโˆˆ๐‘int๐‘†โˆ’1๎€ท๐‘ง๐‘–๎€ธ๎™๐ฟ๐‘โŠ‚๐‘†โˆ’1๎€ท๐‘ง๐‘–๎€ธโŸน๎€ท๐‘ง๐‘–๎€ธโˆˆ๐‘†(๐‘ฅ),(2.8)(3) for each ๐‘ฅโˆˆ๐ฟ๐‘,โˆ‘๐‘š๐‘–=0๐œ“๐‘–(๐‘ฅ)=1.
Define a mapping ๐œ“โˆถ๐ฟ๐‘โ†’ฮ”๐‘š by ๐œ“(๐‘ฅ)=๐‘š๎“๐‘–=0๐œ“๐‘–(๐‘ฅ)๐‘’๐‘–,โˆ€๐‘ฅโˆˆ๐ฟ๐‘.(2.9) Hence ๐œ“ is continuous, and for each ๐‘ฅโˆˆ๐ฟ๐‘, ๎“๐œ“(๐‘ฅ)=๐‘—โˆˆ๐ฝ(๐‘ฅ)๐œ“๐‘—(๐‘ฅ)๐‘’๐‘—โˆˆฮ”๐ฝ(๐‘ฅ),โˆ€๐‘ฅโˆˆ๐ฟ๐‘,(2.10) where ๐ฝ(๐‘ฅ)={๐‘—โˆˆ{0,โ€ฆ,๐‘š}โˆถ๐œ“๐‘—(๐‘ฅ)โ‰ 0}. It follows from (2.8) that {๐‘ง๐‘–โˆถ๐‘–โˆˆ๐ฝ(๐‘ฅ)}โŠ‚๐‘†(๐‘ฅ). By condition (i) ๐œ‘๐‘€โˆ˜๐œ“(๐‘ฅ)โˆˆ๐œ‘๐‘€๎€ทฮ”๐ฝ(๐‘ฅ)๎€ธโŠ†๐‘„(๐‘ฅ),(2.11)๐‘โŠ‚๐ฟ๐‘โŠ‚๐‘‹, and (2.7), we have, ๐œ“โˆ˜๐œ‘๐‘€โˆถฮ”๐‘šโ†’2ฮ”๐‘š has a fixed point ๐‘งโˆˆฮ”๐‘š, that is, ๐‘ง=๐œ“โˆ˜๐œ‘๐‘€(๐‘ง). Let ๐‘ฅ=๐œ‘๐‘€(๐‘ง). Then ๐‘ฅ=๐œ‘๐‘€(๐‘ง)=๐œ‘๐‘€โˆ˜๎€ท๐œ“โˆ˜๐œ‘๐‘€๎€ธ(๐‘ง)=๐œ‘๐‘€๎€ทโˆ˜๐œ“๐‘ฅ๎€ธ๎€ทโŠ‚๐‘„๐‘ฅ๎€ธ.(2.12) This completes the proof.

Lemma 2.4. Let (๐‘‹,๐œ‘๐‘) and (๐‘,๐œ‘โˆ—๐‘€) be two ๐น๐ถ-spaces. let ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ be set-valued mappings. If for each ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘ and ๐‘‡ being weakly-๐น๐ถ valued, then for each โ‹‚๐‘ฅโˆˆ๐‘‹,{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…} is ๐น๐ถ-subspace of ๐‘‹.

Proof. Let ๐‘ฅโˆˆ๐‘‹,{๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘›}โˆˆโŸจ๐‘‹โŸฉ with โ‹‚๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ๐‘–)โ‰ โˆ… for each ๐‘–โˆˆ{1,โ€ฆ,๐‘›}, and ๐‘ฆโˆˆ๐œ‘๐‘(ฮ”๐‘›). For each ๐‘–โˆˆ{1,โ€ฆ,๐‘›}, let ๐‘ง๐‘–โ‹‚โˆˆ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ๐‘–). It follows from ๐‘‡ is weakly-๐น๐ถ valued that โ‹‚๐œ‘๐‘‡(๐‘ฆ)โˆ—๐‘€(ฮ”๎…ž๐‘›)โ‰ โˆ…. Since ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘, we have โ‹‚๐œ‘โˆ…โ‰ ๐‘‡(๐‘ฆ)โˆ—๐‘€(ฮ”๎…ž๐‘›โ‹‚)โŠ‚๐‘‡(๐‘ฆ)๐‘ƒ(๐‘ฅ). Hence, for each โ‹‚๐‘ฅโˆˆ๐‘‹,{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…} is ๐น๐ถ-subspace of ๐‘‹. This completes the proof.

Theorem 2.5. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, let ๐‘ be a nonempty set, and, let ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘,๐‘„โˆถ๐‘‹โ†’2๐‘‹ be three set-valued mappings satisfying the following conditions: (i)for each ๐‘ฅโˆˆ๐‘‹,๐‘„(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘‹;(ii)for each โ‹‚๐‘ฅโˆˆ๐‘‹,{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…}โŠ†๐‘„(๐‘ฅ);(iii)โ‹ƒ๐‘‹=๐‘งโˆˆ๐‘‡(๐‘‹)๐‘int๐‘ƒโˆ’1(๐‘ง);(iv)there exists a compact subset ๐พ of ๐‘‹ such that for each ๐‘โˆˆโŸจ๐‘‹โŸฉ, there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎šโงต๐พโŠ†๐‘ฆโˆˆ๐ฟ๐‘๎‚†๎™๎‚‡.๐‘int๐‘ฅโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…(2.13) Then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ฅโˆˆ๐‘„(๐‘ฅ).

Proof. Define a mapping ๐‘†โˆถ๐‘‹โ†’2๐‘‹ by ๎‚†๎™๎‚‡๐‘†(๐‘ฅ)=๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ….(2.14) It is easy to see that for a family {๐ด๐‘–}๐‘–โˆˆ๐ผ of subsets of a topological space, โ‹ƒ๐‘–โˆˆ๐ผ๐‘int๐ด๐‘–โ‹ƒโŠ†๐‘int(๐‘–โˆˆ๐ผ๐ด๐‘–). Thus, we have ๎š๐‘ฆโˆˆ๐‘‹๐‘int๐‘†โˆ’1๎š(๐‘ฆ)=๐‘ฆโˆˆ๐‘‹๎ƒฉ๎š๐‘int๐‘งโˆˆ๐‘‡(๐‘ฆ)๐‘ƒโˆ’1๎ƒชโŠ‡๎š(๐‘ง)๐‘ฆโˆˆ๐‘‹๎š๐‘งโˆˆ๐‘‡(๐‘ฆ)๐‘int๐‘ƒโˆ’1๎š(๐‘ง)=๐‘งโˆˆ๐‘‡(๐‘‹)๐‘int๐‘ƒโˆ’1(๐‘ง).(2.15) By condition (iii), it follows that โ‹ƒ๐‘‹=๐‘ฆโˆˆ๐‘‹๐‘int๐‘†โˆ’1(๐‘ฆ). Clearly condition (iv) of Theorem 2.5 implies condition (iii) of Theorem 2.3. By condition (i) and (ii), for each ๐‘ฅโˆˆ๐‘‹ and ๐‘โˆˆโŸจ๐‘†(๐‘ฅ)โŸฉ, we have ๐œ‘๐‘(ฮ”๐‘˜)โŠ†๐‘„(๐‘ฅ). Then all conditions of Theorem 2.3 are satisfied. By Theorem 2.3, there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ฅโˆˆ๐‘„(๐‘ฅ). This completes the proof.

Particularly, when โ‹‚๐‘„(๐‘ฅ)={๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…}, Theorem 2.5 reduces to the following result.

Corollary 2.6. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, let ๐‘ be a nonempty set, and let ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ be two set-valued mappings satisfying the following conditions: (i)โ‹ƒ๐‘‹=๐‘งโˆˆ๐‘‡(๐‘‹)๐‘int๐‘ƒโˆ’1(๐‘ง);(ii)for each ๐‘ฅโˆˆ๐‘‹,๐‘„(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘‹;(iii)there exists a compact subset ๐พ of ๐‘‹ such that for each ๐‘โˆˆโŸจ๐‘‹โŸฉ, there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎šโงต๐พโŠ†๐‘ฆโˆˆ๐ฟ๐‘๎‚†๎™๎‚‡.๐‘int๐‘ฅโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…(2.16) Then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(โ‹‚๐‘ฅ)๐‘‡(๐‘ฅ)โ‰ โˆ….

Remark 2.7. Theorem 2.3 generalizes Theorem 4 in [14]. Theorem 2.5 generalizes Theorem 1 in [2]. Corollary 2.6 generalizes Theorem 8 in [12], Theorem 3.6 in [13], and Theorem 2 in [2].

Corollary 2.8. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, ๐‘ be a nonempty set and ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ be two set-valued mappings satisfying the following conditions: (i)๐‘ƒโˆ’1 is transfer compactly open valued;(ii)for each โ‹‚๐‘ฅโˆˆ๐‘‹,{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…} is ๐น๐ถ-subspace of ๐‘‹;(iii)there exists a compact subset ๐พ of ๐‘‹ such that for each ๐‘โˆˆโŸจ๐‘‹โŸฉ, there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎šโงต๐พโŠ†๐‘ฆโˆˆ๐ฟ๐‘๎‚†๎™๎‚‡,๐‘int๐‘ฅโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…(2.17)(iv)for each โ‹‚๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฅ)=โˆ….
Then at least one of the following assertions holds: (a)there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(๐‘ฅ)=โˆ…,(b)there exists ๐‘งโˆˆ๐‘ such that ๐‘‡โˆ’1(๐‘ง)=โˆ….

Proof. By means of contradiction, suppose that for each ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ)โ‰ โˆ…, and for each ๐‘งโˆˆ๐‘,๐‘‡โˆ’1(๐‘ง)โ‰ โˆ… (that is, ๐‘‡(๐‘‹)=๐‘). Then, by Lemma 2.2, we have ๎š๐‘‹=๐‘งโˆˆ๐‘๐‘int๐‘ƒโˆ’1๎š(๐‘ง)=๐‘งโˆˆ๐‘‡(๐‘‹)๐‘int๐‘ƒโˆ’1(๐‘ง).(2.18) Then all conditions of Corollary 2.6 are satisfied, and it follows that there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(โ‹‚๐‘ฅ)๐‘‡(๐‘ฅ)โ‰ โˆ…, but this contradicts condition (iv). This completes the proof.

Corollary 2.9. In Corollary 2.8, if one assumes further that ๐‘‡(๐‘‹)=๐‘, then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(๐‘ฅ)=โˆ….

Corollary 2.10. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, and let ๐‘ƒโˆถ๐‘‹โ†’2๐‘‹ be a set-valued mapping satisfying the following conditions: (i)๐‘ƒโˆ’1 is transfer compactly open valued;(ii)for each ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘‹;(iii)for each ๐‘ฅโˆˆ๐‘‹,๐‘ฅโˆ‰๐‘ƒ(๐‘ฅ);(iv)there exists a compact subset ๐พ of ๐‘‹ such that for each ๐‘โˆˆโŸจ๐‘‹โŸฉ, there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎šโงต๐พโŠ†๐‘ฆโˆˆ๐ฟ๐‘๐‘int๐‘ƒโˆ’1(๐‘ฆ).(2.19) Then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(๐‘ฅ)=โˆ….

Proof. Define a mapping ๐‘‡โˆถ๐‘‹โ†’2๐‘‹ by ๐‘‡(๐‘ฅ)={๐‘ฅ} for all ๐‘ฅโˆˆ๐‘‹. Then Corollary 2.10 follows from Corollary 2.8.

Remark 2.11. Corollary 2.8 generalizes Theorem 3 in [2]. Corollary 2.9 and Corollary 2.10 improve Corollary 1 and Corollary 2 in [2], respectively. If the ๐น๐ถ-space ๐‘‹ is compact, condition (iii) in Theorem 2.3 is satisfied trivially. Consequently, condition (iv) of Theorem 2.5, condition (iv) of Corollary 2.10, condition (iii) of Corollary 2.6, condition (iii) of Corollary 2.8 and condition (iii) of Corollary 2.9 are all satisfied trivially.

Corollary 2.12. Let (๐‘‹,๐œ‘๐‘) and (๐‘,๐œ‘โˆ—๐‘€) be two ๐น๐ถ-spaces and let ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ be two set-valued mappings satisfying conditions (i) and (iii) in Corollary 2.6. If for each ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘ and ๐‘‡ is weakly-๐น๐ถ valued, then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(โ‹‚๐‘ฅ)๐‘‡(๐‘ฅ)โ‰ โˆ….

Proof. By Lemma 2.4 and Corollary 2.6, we have that the conclusion of Corollary 2.12 holds.

Corollary 2.13. Let (๐‘‹,๐œ‘๐‘) and (๐‘,๐œ‘โˆ—๐‘€) be two ๐น๐ถ-spaces and ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ be set-valued mappings satisfying conditions (i), (iii) and (iv) in Corollary 2.8. If for each ๐‘ฅโˆˆ๐‘‹,๐‘ƒ(๐‘ฅ) is ๐น๐ถ-subspace of ๐‘ and ๐‘‡ is weakly-๐น๐ถ valued, then at least one of the following assertions holds: (a)there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(๐‘ฅ)=โˆ…;(b)there exists ๐‘งโˆˆ๐‘ such that ๐‘‡โˆ’1(๐‘ง)=โˆ….

Proof. By Lemma 2.4 and Corollary 2.8, we have that the conclusion of Corollary 2.13 holds.

Remark 2.14. Corollary 2.12 generalizes Theorem 4 in [2]. Corollary 2.13 generalizes Theorem 5 in [2].

3. Generalized Equilibrium Theorems and Minimax Inequality

Inspired by Balaj and Lin [2], we have the following concept.

Definition 3.1. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, let ๐‘ and ๐‘‰ be nonempty sets, let ๐œŒ be a relation on 2๐‘‰, and let ๐นโˆถ๐‘‹ร—๐‘โ†’2๐‘‰,๐ถโˆถ๐‘‹โ†’2๐‘‰ be set-valued mappings. We say that ๐น is (๐ถ,๐œŒ)-transfer compactly continuous in the first variable if for any ๐‘ฅโˆˆ๐‘‹,๐‘งโˆˆ{๐‘ขโˆˆ๐‘โˆถ๐น(๐‘ฅ,๐‘ข)๐œŒ๐ถ(๐‘ฅ)}, there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘งโˆˆ๐‘int{๐‘ขโˆˆ๐‘โˆถ๐น(๐‘ฅ,๐‘ข)๐œŒ๐ถ(๐‘ฅ)}.

The following concept generalizes the corresponding notion in Ding [6, 8].

Definition 3.2. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space and ๐‘Œ be topological space. For each ๐‘ฆโˆˆ๐‘Œ,๐‘“โˆถ๐‘Œร—๐‘‹โ†’๐‘… is said to be ๐น๐ถ-quasiconvex (resp., ๐น๐ถ-quasiconcave) in the first variable, if for each ๐œ†โˆˆ๐‘…, the set {๐‘ฅโˆˆ๐‘‹โˆถ๐‘“(๐‘ฆ,๐‘ฅ)<๐œ†} (resp., {๐‘ฅโˆˆ๐‘‹โˆถ๐‘“(๐‘ฅ,๐‘ฆ)>๐œ†}) is an ๐น๐ถ-subspace of ๐‘‹.

The following concept generalizes the corresponding of notion in Chen and Chang [5].

Definition 3.3. Let ๐‘‹ and ๐‘Œ be two topological spaces, and let ๐‘“โˆถ๐‘Œร—๐‘‹โ†’๐‘…โˆช{โˆ’โˆž,+โˆž} be a function. Then ๐‘“ is said to be ๐›ผ-transfer compactly lower semicontinuous (in short, ๐›ผ-transfer compactly l.s.c) in the first variable if for each ๐‘ฆโˆˆ๐‘Œ with ๐‘ฅโˆˆ{๐‘ขโˆˆ๐‘‹โˆถ๐‘“(๐‘ฆ,๐‘ข)>๐›ผ}, there exists ๐‘ฆโˆˆ๐‘Œ such that ๐‘ฅโˆˆ๐‘int{๐‘ขโˆˆ๐‘‹โˆถ๐‘“(๐‘ฆ,๐‘ข)>๐›ผ}. ๐‘“ is said to be ๐›ผ-transfer compactly u.s.c in the first variable if and only if โ€“๐‘“ is ๐›ผ-transfer compactly l.s.c in the first variable. If ๐‘“ is ๐›ผ-transfer compactly l.s.c in the first variable for each ๐›ผโˆˆ๐‘…, we say that ๐‘“ is transfer compactly l.s.c in the first variable.

Theorem 3.4. Let (๐‘‹,๐œ‘๐‘) be an ๐น๐ถ-space, let ๐‘ and ๐‘‰ be nonempty sets, and let ๐œŒ be a relation on 2๐‘‰. Let ๐นโˆถ๐‘‹ร—๐‘โ†’2๐‘‰,๐ถโˆถ๐‘‹โ†’2๐‘‰, and ๐‘‡โˆถ๐‘‹โ†’2๐‘ be set-valued mappings satisfying the following conditions: (i)๐‘‡(๐‘‹)=๐‘;(ii)๐น is (๐ถ,๐œŒ๐‘)-transfer compactly continuous in the first variable;(iii) there exists a compact subset ๐พ of ๐‘‹ such that for each ๐‘โˆˆโŸจ๐‘‹โŸฉ, there exists a compact ๐น๐ถ-subspace ๐ฟ๐‘ of ๐‘‹ containing ๐‘ such that ๐ฟ๐‘๎™๎™๐‘ฆโˆˆ๐ฟ๐‘๐‘cl{๐‘ฅโˆˆ๐‘‹โˆถ๐น(๐‘ฅ,๐‘ง)๐œŒ๐ถ(๐‘ฅ),โˆ€๐‘งโˆˆ๐‘‡(๐‘ฆ)}โŠ†๐พ,(3.1)(iv) for each ๐‘ฅโˆˆ๐‘‹, the set {๐‘ฆโˆˆ๐‘‹โˆถ๐น(๐‘ฅ,๐‘ง)๐œŒ๐‘๐ถ(๐‘ฅ),forsome๐‘งโˆˆ๐‘‡(๐‘ฆ)} is ๐น๐ถ-subspace of ๐‘‹;(v) for all ๐‘ฅโˆˆ๐‘‹ and any ๐‘งโˆˆ๐‘‡(๐‘ฅ),๐น(๐‘ฅ,๐‘ง)๐œŒ๐ถ(๐‘ฅ).Then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐น(๐‘ฅ,๐‘ง)๐œŒ๐ถ(๐‘ฅ) for all ๐‘งโˆˆ๐‘.

Proof. Let ๐‘ƒโˆถ๐‘‹ร—๐‘โ†’2๐‘ be the set-valued mapping defined by ๐‘ƒ(๐‘ฅ)={๐‘งโˆˆ๐‘โˆถ๐น(๐‘ฅ,๐‘ง)๐œŒ๐‘๐ถ(๐‘ฅ)}.(3.2) We prove that the mappings satisfy the conditions of Theorem 2.5. It is clear that condition (ii) is equivalent to the fact that the mapping ๐‘ƒโˆ’1 is transfer compactly open valued. By condition (iv), for each ๐‘ฅโˆˆ๐‘‹ the set โ‹‚{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…} is ๐น๐ถ-subspace of ๐‘‹. Let ๐‘โˆˆโŸจ๐‘‹โŸฉ and for all ๐‘ฅโˆˆ๐ฟ๐‘โงต๐พ. Then, by condition (iii) there exists ๐‘ฆโˆˆ๐ฟ๐‘ such that ๎€ฝ๐‘ฅ๐‘ฅโˆˆ๐‘‹โงต๐‘cl๎…ž๎€ท๐‘ฅโˆˆ๐‘‹โˆถ๐น๎…ž๎€ธ๎€ท๐‘ฅ,๐‘ง๐œŒ๐ถ๎…ž๎€ธ๎€พ๎€ฝ๐‘ฅ,โˆ€๐‘งโˆˆ๐‘‡(๐‘ฆ)=๐‘int๎…ž๎€ท๐‘ฅโˆˆ๐‘‹โˆถ๐น๎…ž๎€ธ๐œŒ,๐‘ง๐‘๐ถ๎€ท๐‘ฅ๎…ž๎€ธ๎€พ๎‚†๐‘ฅ,forsome๐‘งโˆˆ๐‘‡(๐‘ฆ)=๐‘int๎…ž๎€ท๐‘ฅโˆˆ๐‘‹โˆถ๐‘ƒ๎…ž๎€ธ๎™๎‚‡.๐‘‡(๐‘ฆ)โ‰ โˆ…(3.3)
Thus all the conditions of Theorem 2.5 are fulfilled, and by condition (i), ๐‘‡โˆ’1(๐‘ง)โ‰ โˆ… for all zโˆˆ๐‘. Hence, there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ƒ(๐‘ฅ)=โˆ…, that is, ๐น(๐‘ฅ,๐‘ง)๐œŒ๐ถ(๐‘ฅ) for all ๐‘งโˆˆ๐‘. This completes the proof.

Remark 3.5. Theorem 3.4 generalizes Theorem 6 in [2] in the following several aspects: (a) from ๐บ-convex space to ๐น๐ถ-space without linear structure; (b) from (๐ถ,๐œŒ๐‘)-transfer continuous to (๐ถ,๐œŒ๐‘)-transfer compactly continuous; (c) conditions (iii) and (iv) of Theorem 3.4 are weaker than conditions (iii) and (iv) of Theorem 6 in [2].

Corollary 3.6. Let (๐‘‹,๐œ‘๐‘) and (๐‘,๐œ‘โˆ—๐‘€) be two ๐น๐ถ-spaces, let ๐‘‰ be nonempty set, and let ๐œŒ be a relation on 2๐‘‰. Let ๐นโˆถ๐‘‹ร—๐‘โ†’2๐‘‰,๐ถโˆถ๐‘‹โ†’2๐‘‰, and ๐‘‡โˆถ๐‘‹โ†’2๐‘ be set-valued mappings satisfying the following conditions: ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘ are set-valued mappings satisfying conditions (i), (ii), (iii), and (v) in Theorem 3.4 and if for each ๐‘ฅโˆˆ๐‘‹,{๐‘งโˆˆ๐‘โˆถ๐น(๐‘ฅ,๐‘ง)๐œŒ๐‘๐ถ(๐‘ฅ)} is ๐น๐ถ-subspace of ๐‘ and ๐‘‡ is weakly-๐น๐ถ valued, then there exists ๐‘ฅโˆˆ๐‘‹ such that ๐น(๐‘ฅ,๐‘ง)๐œŒ๐ถ(๐‘ฅ) for all ๐‘งโˆˆ๐‘.

Proof. By Lemma 2.4 and Corollary 2.12, we have that the conclusion of Corollary 3.6 holds.

Remark 3.7. Corollary 3.6 generalizes Theorem 7 in [2] in the following several aspects: (a) from ๐บ-convex space to ๐น๐ถ-space without linear structure; (b) from (๐ถ,๐œŒ๐‘)-transfer continuous to (๐ถ,๐œŒ๐‘)-transfer compactly continuous; (c) from ๐บ-weakly convex to weakly-๐น๐ถ valued; (c) conditions (iii) and โ€œfor each ๐‘ฅโˆˆ๐‘‹,{๐‘งโˆˆ๐‘โˆถ๐น(๐‘ฅ,๐‘ง)๐œŒ๐‘๐ถ(๐‘ฅ)} is ๐น๐ถ-subspace of ๐‘โ€ of Corollary 3.6 are weaker than conditions (iii) and (vii) of Theorem 7 in [2].

Theorem 3.8. Let (๐‘‹,๐œ‘๐‘) be a compact ๐น๐ถ-space, let ๐‘ be nonempty set, let ๐‘“,๐‘”โˆถ๐‘ร—๐‘‹โ†’๐‘…,โ„Žโˆถ๐‘‹ร—๐‘‹โ†’๐‘… be three functions, and let ๐›ผ,๐›ฝ,๐›พ be three real numbers satisfying the following conditions: (i)for each ๐‘ฅโˆˆ๐‘‹, the set {๐‘ฆโˆˆ๐‘‹โˆถโ„Ž(๐‘ฅ,๐‘ฆ)<๐›พ} is ๐น๐ถ-subspace of ๐‘‹;(ii)๐‘“ is ๐›ผ-transfer compactly u.s.c in the first variable;(iii)for each ๐‘ฅ,๐‘ฆโˆˆ๐‘‹,๐‘งโˆˆ๐‘, ๐‘“(๐‘ง,๐‘ฅ)<๐›ผ and ๐‘”(๐‘ง,๐‘ฆ)<๐›ฝโ‡’โ„Ž(๐‘ฅ,๐‘ฆ)<๐›พ;(iv)โ„Ž(๐‘ฅ,๐‘ฅ)โ‰ฅ๐›พ for all ๐‘ฅโˆˆ๐‘‹.Then, at least one of the following assertions holds: (a)there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘“(๐‘ง,๐‘ฅ)โ‰ฅ๐›ผ for all ๐‘งโˆˆ๐‘;(b)there exists ๐‘งโˆˆ๐‘ such that ๐‘”(๐‘ง,๐‘ฅ)โ‰ฅ๐›ฝ for all ๐‘ฅโˆˆ๐‘‹.

Proof. Let ๐‘ƒ,๐‘‡โˆถ๐‘‹โ†’2๐‘,๐‘„โˆถ๐‘‹โ†’2๐‘‹ be the set-valued mappings defined by ๐‘‡๐‘ƒ(๐‘ฅ)={๐‘งโˆˆ๐‘โˆถ๐‘“(๐‘ง,๐‘ฅ)<๐›ผ},(๐‘ฅ)={๐‘งโˆˆ๐‘โˆถ๐‘”(๐‘ง,๐‘ฅ)<๐›ฝ},๐‘„(๐‘ฅ)={๐‘ฆโˆˆ๐‘‹โˆถโ„Ž(๐‘ฅ,๐‘ฆ)<๐›พ}(3.4) for all ๐‘ฅโˆˆ๐‘‹. By means of contradiction, suppose that both assertions (a) and (b) would be false; that is(1)for each ๐‘ฅโˆˆ๐‘‹, there exists ๐‘งโˆˆ๐‘ such that ๐‘“(๐‘ง,๐‘ฅ)<๐›ผ,(2)for each ๐‘งโˆˆ๐‘, there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘”(๐‘ง,๐‘ฅ)<๐›ฝ.
By (2), ๐‘‡(๐‘‹)=๐‘. Arbitrarily choose ๐‘ฅโˆˆ๐‘‹. By (1) and condition (ii), it follows that ๐‘ฅโˆˆ{๐‘ขโˆˆ๐‘‹โˆถ๐‘“(๐‘ง,๐‘ฅ)<๐›ผ}=๐‘ƒโˆ’1(๐‘ง), and there exists ๐‘งโˆˆ๐‘ such that ๐‘ฅโˆˆ๐‘int๐‘ƒโˆ’1(๐‘ง). Hence, we infer that โ‹ƒ๐‘‹=๐‘งโˆˆ๐‘๐‘int๐‘ƒโˆ’1โ‹ƒ(๐‘ง)=๐‘งโˆˆ๐‘‡(๐‘‹)๐‘int๐‘ƒโˆ’1(๐‘ง). By condition (i), ๐‘„(๐‘ฅ) is ๐นC-subspace of ๐‘‹, and by condition (iii), โ‹‚{๐‘ฆโˆˆ๐‘‹โˆถ๐‘ƒ(๐‘ฅ)๐‘‡(๐‘ฆ)โ‰ โˆ…}โŠ†๐‘„(๐‘ฅ) for each ๐‘ฅโˆˆ๐‘‹. Taking into account Remark 2.11, all conditions of Theorem 2.3 are satisfied, and it follows that there exists ๐‘ฅโˆˆ๐‘‹ such that ๐‘ฅโˆˆ๐‘„(๐‘ฅ). Hence, we have โ„Ž(๐‘ฅ,๐‘ฅ)<๐›พ, which contradicts condition (iv). This completes the proof.

Remark 3.9. Theorem 3.8 generalizes Theorem 12 in [2] in the following several aspects: (a) from ๐บ-convex space to ๐น๐ถ-space without linear structure; (b) from ๐›ผ-transfer u.s.c to ๐›ผ-transfer compactly u.s.c; (c) conditions (i) of Theorem 3.8 are weaker than conditions (i) of Theorem 12 in [2].

From Theorem 3.8, we may obtain the following minimax inequality.

Corollary 3.10. Let (๐‘‹,๐œ‘๐‘) be a compact ๐น๐ถ-space, let ๐‘ be nonempty set, and let ๐‘“,๐‘”โˆถ๐‘ร—๐‘‹โ†’๐‘…,โ„Žโˆถ๐‘‹ร—๐‘‹โ†’๐‘… be three functions satisfying the following conditions: (i)โ„Ž(๐‘ฅ,โ‹…) is ๐น๐ถ-quasiconvex, for each ๐‘ฅโˆˆ๐‘‹;(ii)๐‘“ is transfer compactly u.s.c in the first variable;(iii)for each ๐‘ฅ,๐‘ฆโˆˆ๐‘‹,๐‘งโˆˆ๐‘, โ„Ž(๐‘ฅ,๐‘ฆ)โ‰ค๐‘“(๐‘ง,๐‘ฅ)+๐‘”(๐‘ง,๐‘ฆ).Then inf๐‘ฅโˆˆ๐‘‹โ„Ž(๐‘ฅ,๐‘ฅ)โ‰คsup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ง,๐‘ฅ)+sup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ง,๐‘ฅ),(3.5) with the convention โˆž+(โˆ’โˆž)=โˆž.

Proof. We may suppose that inf๐‘ฅโˆˆ๐‘‹โ„Ž(๐‘ฅ,๐‘ฅ)>โˆ’โˆž,sup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ง,๐‘ฅ)<โˆž,sup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ง,๐‘ฅ)<โˆž.(3.6) By means of contradiction, suppose that inf๐‘ฅโˆˆ๐‘‹โ„Ž(๐‘ฅ,๐‘ฅ)>sup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ง,๐‘ฅ)+sup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ง,๐‘ฅ)(3.7) and choose ๐›ผ,๐›ฝ,๐›พโˆˆ๐‘… such that sup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ง,๐‘ฅ)<๐›ผ,sup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ง,๐‘ฅ)<๐›ฝ,๐›พ<inf๐‘ฅโˆˆ๐‘‹โ„Ž(๐‘ฅ,๐‘ฅ),๐›ผ+๐›ฝ<๐›พ.(3.8)
It is easy to see that functions ๐‘“,๐‘”, and โ„Ž satisfy all the conditions of Theorem 3.8. We prove that neither assertion (a) nor (b) of the conclusion of Theorem 3.8 can take place.If (a) happens, then๐›ผโ‰คinf๐‘งโˆˆ๐‘๐‘“๎€ท๐‘ง,๐‘ฅ๎€ธโ‰คsup๐‘ฅโˆˆ๐‘‹inf๐‘งโˆˆ๐‘๐‘“(๐‘ง,๐‘ฅ),(3.9) a contradiction.If (b) happens, thensup๐‘งโˆˆ๐‘inf๐‘ฅโˆˆ๐‘‹๐‘”(๐‘ง,๐‘ฅ)โ‰ฅinf๐‘ฅโˆˆ๐‘‹๐‘”๎€ท๎€ธ๐‘ง,๐‘ฅโ‰ฅ๐›ฝ,(3.10) a contradiction again.
This completes the proof.

Remark 3.11. Corollary 3.10 generalizes Theorem 13 in [2] in the following several aspects: (a) from ๐บ-convex space to ๐น๐ถ-space without linear structure; (b) from ๐บ-quasiconvex to ๐น๐ถ-quasiconvex; (c) from transfer u.s.c to transfer compactly u.s.c.

Acknowledgment

This work is supported by the Scientific Research Foundation of CUIT under Grant KYTZ201114.