Table of Contents
ISRN Pediatrics
Volume 2011 (2011), Article ID 676549, 5 pages
http://dx.doi.org/10.5402/2011/676549
Case Report

GCK-MODY (MODY 2) Caused by a Novel p.Phe330Ser Mutation

1Division of Pediatric Endocrinology, Department of Pediatrics, Technische Universität München Kölner Platz 1, 80804 Munich, Germany
2Institut für Diabetesforschung, Helmholtz Zentrum München, 85764 Neuherberg, Germany
3Department of Clinical Chemistry, Klinikum Großhadern, Ludwig Maximilian University of Munich, 81377 Munich, Germany

Received 27 January 2011; Accepted 13 March 2011

Academic Editor: G. Zuccotti

Copyright © 2011 Walter Bonfig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Fajans, G. I. Bell, and K. S. Polonsky, “Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young,” The New England Journal of Medicine, vol. 345, no. 13, pp. 971–980, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Stoffel, P. Froguel, J. Takeda et al., “Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7698–7702, 1992. View at Google Scholar · View at Scopus
  3. M. Stoffel, P. Patel, Y. M. D. Lo et al., “Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes,” Nature Genetics, vol. 2, no. 2, pp. 153–156, 1992. View at Google Scholar · View at Scopus
  4. F. M. Matschinsky, “Regulation of pancreatic β-cell glucokinase: from basics to therapeutics,” Diabetes, vol. 51, no. 3, pp. S394–S404, 2002. View at Google Scholar · View at Scopus
  5. P. Froguel, M. Vaxillaire, F. Sun et al., “Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus,” Nature, vol. 356, no. 6365, pp. 162–164, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. A. T. Hattersley, R. C. Turner, M. A. Permutt et al., “Linkage of type 2 diabetes to the glucokinase gene,” The Lancet, vol. 339, no. 8805, pp. 1307–1310, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Njølstad, O. Søvik, A. Cuesta-Muñoz et al., “Neonatal diabetes mellitus due to complete glucokinase deficiency,” The New England Journal of Medicine, vol. 344, no. 21, pp. 1588–1592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Njølstad, J. V. Sagen, L. Bjørkhaug et al., “Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway,” Diabetes, vol. 52, no. 11, pp. 2854–2860, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Porter, N. J. Shaw, T. G. Barrett, A. T. Hattersley, S. Ellard, and A. L. Gloyn, “Permanent neonatal diabetes in an Asian infant,” Journal of Pediatrics, vol. 146, no. 1, pp. 131–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Rubio-Cabezas, F. D. González, A. Aragonés, J. Argente, and A. Campos-Barros, “Permanent neonatal diabetes caused by a homozygous nonsense mutation in the glucokinase gene,” Pediatric Diabetes, vol. 9, no. 3, pp. 245–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Turkkahraman, I. Bircan, N. D. Tribble, S. Akçurin, S. Ellard, and A. L. Gloyn, “Permanent neonatal diabetes mellitus caused by a novel homozygous(T168A) glucokinase (GCK) mutation: initial response to oral sulphonylurea therapy,” Journal of Pediatrics, vol. 153, no. 1, pp. 122–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. B. T. Christesen, B. B. Jacobsen, S. Odili et al., “The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy,” Diabetes, vol. 51, no. 4, pp. 1240–1246, 2002. View at Google Scholar · View at Scopus
  13. H. B. T. Christesen, N. D. Tribble, A. Molven et al., “Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation,” European Journal of Endocrinology, vol. 159, no. 1, pp. 27–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Cuesta-Muñoz, H. Huopio, T. Otonkoski et al., “Severe persistent hyperinsulinemic hypoglycemic due to a de novo glucokinase mutation,” Diabetes, vol. 53, no. 8, pp. 2164–2168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Glaser, P. Kesavan, M. Heyman et al., “Familial hyperinsulinism caused by an activating glucokinase mutation,” The New England Journal of Medicine, vol. 338, no. 4, pp. 226–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sayed, D. R. Langdon, S. Odili et al., “Extremes of clinical and enzymatic phenotypes in children with hyperinsulinism caused by glucokinase activating mutations,” Diabetes, vol. 58, no. 6, pp. 1419–1427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. K. Osbak, K. Colclough, C. Saint-Martin et al., “Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia,” Human Mutation, vol. 30, no. 11, pp. 1512–1526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ellard, F. Beards, L. I. S. Allen et al., “A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria,” Diabetologia, vol. 43, no. 2, pp. 250–253, 2000. View at Google Scholar · View at Scopus
  19. O. J. S. B. Gill Carey, K. Colclough, S. Ellard, and A. T. Hattersley, “Finding a glucokinase mutation alters treatment,” Diabetic Medicine, vol. 24, pp. 6–7, 2007. View at Google Scholar
  20. E. A. Davis, A. Cuesta-Muñoz, M. Raoul et al., “Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis,” Diabetologia, vol. 42, no. 10, pp. 1175–1186, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Gloyn, “Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy,” Human Mutation, vol. 22, no. 5, pp. 353–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. V. Sagen, L. Bjørkhaug, J. Molnes et al., “Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry,” Pediatric Diabetes, vol. 9, no. 5, pp. 442–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. N. Weedon, T. M. Frayling, B. Shields et al., “Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene,” Diabetes, vol. 54, no. 2, pp. 576–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. N. Weedon, V. J. Clark, Y. Qian et al., “A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses,” American Journal of Human Genetics, vol. 79, no. 6, pp. 991–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Gašperíková, N. D. Tribble, J. Staník et al., “Identification of a novel β-cell glucokinase (GCK) promoter mutation (-71G>C) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans,” Diabetes, vol. 58, no. 8, pp. 1929–1935, 2009. View at Publisher · View at Google Scholar
  26. S. P. Miller, G. R. Anand, E. J. Karschnia, G. I. Bell, D. C. LaPorte, and A. J. Lange, “Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2): different glucokinase defects lead to a common phenotype,” Diabetes, vol. 48, no. 8, pp. 1645–1651, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Codner, A. Rocha, L. Deng et al., “Mild fasting hyperglycemia in children: high rate of glucokinase mutations and some risk of developing type 1 diabetes mellitus,” Pediatric Diabetes, vol. 10, no. 6, pp. 382–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Estalella, I. Rica, G. P. De Nanclares et al., “Mutations in GCK and HNF-1α explain the majority of cases with clinical diagnosis of MODY in Spain,” Clinical Endocrinology, vol. 67, no. 4, pp. 538–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Arden, A. Trainer, N. de la Iglesia et al., “Cell biology assessment of glucokinase mutations V62M and G72R in pancreatic β-cells: evidence for cellular instability of catalytic activity,” Diabetes, vol. 56, no. 7, pp. 1773–1782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. V. Burke, C. W. Buettger, E. A. Davis, S. J. McClane, F. M. Matschinsky, and S. E. Raper, “Cell-biological assessment of human glucokinase mutants causing maturity-onset diabetes of the young type 2 (MODY-2) or glucokinase-linked hyperinsulinaemia (GK-HI),” Biochemical Journal, vol. 342, no. 2, pp. 345–352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Takeda, M. Gidh-Jain, L. Z. Xu et al., “Structure/function studies of human β-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants,” Journal of Biological Chemistry, vol. 268, no. 20, pp. 15200–15204, 1993. View at Google Scholar · View at Scopus
  32. C. M. García-Herrero, M. Galán, O. Vincent et al., “Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity,” Diabetologia, vol. 50, no. 2, pp. 325–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Galán, O. Vincent, I. Roncero et al., “Effects of novel maturity-onset diabetes of the young (MODY)-associated mutations on glucokinase activity and protein stability,” Biochemical Journal, vol. 393, no. 1, pp. 389–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. E. Marotta, G. R. Anand, T. A. Anderson et al., “Identification and characterization of the ATP-binding site in human pancreatic glucokinase,” Archives of Biochemistry and Biophysics, vol. 436, no. 1, pp. 23–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Gidh-Jain, J. Takeda, L. Z. Xu et al., “Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1932–1936, 1993. View at Google Scholar · View at Scopus
  36. M. F. Pino, K. A. Kim, K. D. Shelton et al., “Glucokinase thermolability and hepatic regulatory protein binding are essential factors for predicting the blood glucose phenotype of missense mutations,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13906–13916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Gloyn, N. D. Tribble, M. van de Bunt, A. Barrett, and P. R. V. Johnson, “Glucokinase (GCK) and other susceptibility genes for β-cell dysfunction: the candidate approach,” Biochemical Society Transactions, vol. 36, no. 3, pp. 306–311, 2008. View at Publisher · View at Google Scholar · View at Scopus