Research Article  Open Access
Estimating Free Energies of Formation of Titanate () and Zirconate () Pyrochlore Phases of Trivalent Lanthanides and Actinides
Abstract
A linear free energy relationship was developed to predict the Gibbs free energies of formation (, in kJ/mol) of crystalline titanate (M_{2}Ti_{2}O_{7}) and zirconate (M_{2}Zr_{2}O_{2}) pyrochlore families of trivalent lanthanides and actinides (M^{3+}) from the ShannonPrewitt radius of M^{3+} in a given coordination state (, in nm) and the nonsolvation contribution to the Gibbs free energy of formation of the aqueous M^{3+} (). The linear free energy relationship for M_{2}Ti_{2}O_{7} is expressed as . The linear free energy relationship for M_{2}Zr_{2}O_{7} is expressed as . Estimated free energies were within 0.73 percent of those calculated from the first principles for M_{2}Ti_{2}O_{7} and within 0.50 percent for M_{2}Zr_{2}O_{7}. Entropies of formation were estimated from constituent oxides (J/mol), based on an empirical parameter defined as the difference between the measured entropies of formation of the oxides and the measured entropies of formation of the aqueous cation.
1. Introduction
Pyrochlore is a mineral that preferentially incorporates large amount of Pu, U (up to 30โwt%), and Th (up to 9โwt%) into its structure [1โ4]. Pyrochlores exist as large polyhedra with coordination numbers ranging from 7 to 8, which provides them with the ability to accommodate a wide range of radionuclide (e.g., Pu, U, Ba, Sr, etc.) as well as neutron poisons (e.g., Hf, Gd) [5]. As a result, pyrochlore structure is the primary consideration as immobilization barriers for utilization of excess weaponsgrade plutonium and other radioactive elements [6โ8]. Due to their high radiation tolerance, pyrochlores are largely used as combined inert matrix fuel forms and waste forms for the โburningโ and final disposal of Pu and the minor actinides [8]. Rare earth (RE, also known an lanthanides) titanate pyrochlore (RE_{2}Ti_{2}O_{7}, where REโ=โLu to Sm, or Y) materials have potential use as solid electrolytes and mixed ionic/electronic conducting electrodes [9], catalysts [5], and ferroelectric/dielectric device components [10โ13].
In actual waste forms, due to the presence of several trivalent cations, the pure as well as solid solution phases of pyrochlores of RE with stoichiometry of A_{2}Ti_{2}O_{7} and A_{2}Zr_{2}O_{7} such as La_{2}Ti_{2}O_{7} to Lu_{2}Ti_{2}O_{7}, La_{2}Zr_{2}O_{7} to Lu_{2}Zr_{2}O_{7} as well as trivalent actinide bearing phases are expected to occur, and their thermodynamic properties are needed to assess the behavior of Synrocbased waste forms and to optimize Synroc fabrications. Gd_{2}Ti_{2}O_{7} and CaZrTi_{2}O_{7} doped with 3โwt% of ^{244}Cm have been reported [14]. The Gd_{2}Ti_{2}O_{7} phase and the more general RE titanate pyrochlore formulation (RE_{2}Ti_{2}O_{7}) have been reported in both glass and glassceramic nuclear waste forms [15, 16].
Actinides (3+, 4+, and 5+) are predicted to form the pyrochlore structure by substitutions on both the A and B sites [17]. Only the largest of the actinides exist in nature and the others must be obtained synthetically, and such processes may yield only a few atoms of product. As the atomic number increases, the stability of the tripositive state of actinides increases and parallels with the RE that the known properties of the latter can be used to predict quite exactly the properties of the comparable actinides including their free energies of formation. Despite the broad interest in titanate (A_{2}Ti_{2}O_{7}) and zircon bearing (A_{2}Zr_{2}O_{7}) pyrochlores of RE and actinides, thermodynamic data for pure as well as fictitious pyrochlores and zirconolites of RE and actinides are limited except for the recent measurements of the Gibbs free energy of formation for CaZrTi_{2}O_{7} and CaHfTi_{2}O_{7} phases [18, 19] and the formation enthalpies of the zirconate [20] and titanate pyrochlores [21].
In this study a linear free energy relationship was developed and used to estimate the free energies of formation of trivalent actinide and RE titanate and zirconate pyrochlore phases using the existing thermodynamic data. The free energy relationship is useful in estimating the thermodynamic properties of pure and fictitious phases required for the immobilization reaction construction of solid solution models for actual crystalline phases of pyrochlores.
2. The Rare Earth and Actinide PyrochloreโโStructure
The natural mineral pyrochlore ((Ca, Na)_{2}Nb_{2}O_{6}F) has a large number of both natural and synthetic analogs [15]. The most extended group of synthetic pyrochlores to this date are oxides with the formula A_{2}B_{2}O_{7}, where A and B are di and pentavalent or tri and tetravalent elements, respectively [15]. RE_{2}Ti_{2}O_{7} pyrochlores have been widely studied [22, 23]. Among typical representatives of this group are gadolinium titanate Gd_{2}Ti_{2}O_{7} and calcium uranium titanate CaUTi_{2}O_{7}, the ceramics selected in the United States for immobilization of Pu and other radioactive elements. The actinide (An) titanate pyrochlores (e.g., actinium titanate pyrochlore, Ac_{2}Ti_{2}O_{7}), are closely related in chemical and structural properties to the rare earth titanate pyrochlores (e.g., lanthanum titanate pyrochlore, La_{2}Ti_{2}O_{7}).
In the A_{2}B_{2}O_{7} pyrochloretype structure the A site is usually occupied by large cations such as lanthanides (Ln), whereas smaller first or secondrow transition elements fit the B site better. The most stable pyrochlore structure is formed when the RE cation is combined with a diamagnetic B^{4+} cation. In an pyrochlore formula, the choice of B^{4+} cation is thus limited to Ti^{4+} and Sn^{4+} and marginally Zr^{4+} or Ge^{4+}. REzirconate pyrochlores (A_{2}B_{2}O_{7}, where the B site cation is Zr^{4+}) from La to Sm and REtitanate pyrochlores (A_{2}B_{2}O_{7}, where the B site cation is Ti^{4+}) from Sm to Lu with the coordination of the RE cation of eight and the coordination of Zr and Ti of six have been identified [21]. The fictitious phases of REpyrochlores can be expected to form across the entire trivalent RE and actinide series.
3. Theoretical Basis of the Free Energy Model
Directly analogous to the wellestablished Hammett linear free energy relationship for substituted aqueous organic species and reactions [24โ26], Sverjensky and Molling [27], and Sverjensky [28] developed a linear free energy relationship to correlate the standard Gibbs free energies of formation of an isostructural family of crystalline phases to those of aqueous cations of a given charge. For the trivalent RE and actinide isostructural family, the chemical formula of solids may be represented as , where M is the trivalent cation ( and X represents the remainder of the composition of solid, for instance, in M_{2}(CO_{3})_{3}, the trivalent cation M is La, Ce, Pu, and so forth, and X is ; in REzircone pyrochlore family, the trivalent M is La, Sm, Lu, and so forth and X is . The original SverjenskyMolling linear free energy correlation was modified by the authors for trivalent cations as [29]
In (1) the coefficients and are characteristic of the particular crystal structure represented by , and is the ShannonPrewitt radius of the cation in a given coordination state [27]. is a coefficient related to the coordination number (CN) of the cation. In polymorphs, the structure family with smaller CN has higher value of than the family with higher CN [27]. The parameter is the standard state Gibbs free energies of formation of the end member solids, and the parameter is the standard state Gibbs free energies of nonsolvation, based on a radiusbased correction to the standard state Gibbs free energies of formation of the aqueous cation, . The , not the or the , of the cations directly contributes to containing the cation (). The and can be separated from as follows [27]: Equation (1) was rearranged as
The coefficients and can be determined by regression if the Gibbs free energies of formation of three or more phases in one isostructural family are known.
4. Application of the Free Energy Model to Titanate and Zirconate Pyrochlore Phases
Following the procedure of Sverjensky and Molling we have developed linear free energy correlations for oxide [29] hydroxide [29] carbonate [30], and sulfate isostructural families of trivalent lanthanides and actinides (Table 1). The discrepancies between the calculated and measured data were found to be less than ยฑ3.0% for all isostructural families (oxides, hydroxides, carbonates, and sulfates).
 
The correlation coefficients are from. All calculations are at 25ยฐC and 1โbar. 
Based on our results and results from other crystal families, the coefficient or the slope of (3) is only related to the stoichiometry of the solids. The slopes for all polymorphs of composition are the same within experimental error [27, 28]. Using the previously developed values of for trivalent oxide, hydroxide, carbonate, and sulfate phases of RE and actinides, we related the coefficient to the ratio between the charge of H, C, S, Ti, or Zr and their coordination numbers (CN) or the nearest neighbor in the oxyanions (OH^{} (hydroxide), (carbonate), (sulfate), , (titanate), and (zirconate)) (Figure 1). Based on this relationship we estimated values of for the titanate and zirconate perovskite and pyrochlore families. High ratio of charge/CN indicates strong interaction between the trivalent cation and oxyanions.
The values of calculated for the zircon and titanate pyrochlores from this relation are 0.083 and 0.084 and that for the perovskite structure is 0.2742 (Table 1). The estimated error of is about 0.001. The error of estimated Gibbs free energy of formation resulting from the error of is within 4โkJ/mol. On the other hand the coefficient is related to the structure or the nearest neighbor environment of the cation. The cation with higher CN will have lower value of [27]. The values for trivalent hydroxide family (), carbonate family (), and sulfate family () are estimated to be equal to 791.70โkJ/molโnm [29], 197.24โkJ/molโnm [30], and 26.32โkJ/molโnm respectively. The value for pyrochlore family () should be lower than those for hydroxide and carbonate families and higher than that for calcite family. From the previously estimated values for the hydroxide (), carbonate (), sulfate (), and oxide () families of trivalent RE and actinides, we correlated the coefficient to the CN of the cation in the respective solid phase (Figure 2). The value obtained from this relationship for the perovskite family () is 2.8โkJ/molโnm and for the zirconate and titanate pyrochlore families (), respectively, 83.18โkJ/molโnm and 82.30โkJ/molโnm. The total error in the calculation of free energies of formation resulting from the estimated coefficient is within 4โkJ/mol.
According to Sverjensky and Molling [27], the coefficient reflects characteristics of the reaction type and conditions under which solid formation took place regardless of the valence of the cation or the stoichiometry of the solid. Using the experimentally measured values of standard state (temperature = 298.15โK and pressure = 1โatm.) formation enthalpies from oxides reported in the literature for RE titanate pyrochlores [21] and RE zirconate pyrochlores [20], we calculated the Gibbs free energies of formation as where is the standard state enthalpy of formation of the compound calculated using the thermochemical cycle shown in Table 2. The enthalpies of formation for perovskite structure were calculated from constituent oxides by the following equation [31]: where is the tolerance factor for ABO_{3} perovskites [31]. For an ideal perovskite structure (CN of the A site cation =โ12) is equal to 1.0 [31]. The thermochemical cycles used to calculate the Gibbs free energies of formation from the experimental enthalpies of formation and entropies of formation of the RE and actinide zirconate and titanate pyrochlore and perovskite phases are shown in Table 3.

 
^{
a} Thermodynamic cycles for all solids are shown in Table 2. ^{b}Data are reported in Table 4. 
The entropies of formation are calculated and available only for few RE and actinide perovskite and pyrochlore phases. We developed a relationship to estimate the entropy of formation of RE and actinide perovskite and pyrochlore phases from constituent oxides () applicable to all trivalent RE and actinide perovskite and pyrochlore families based on the empirical parameter , in J/mol, defined as the difference between the measured entropies of formation of the oxides () and the measured entropies of formation of the aqueous cation ()) of RE and actinides as where is the charge of the cation ( for trivalent RE and actinides) and is the number of oxygen atoms combined with one atom of in the oxide (). in (6) refers to one oxygen atom and characterizes the oxygen affinity of the cation, . Experimental values of of RE and actinides were obtained from [32] and those of were obtained from [33]. The entropy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to the two cations ((i) RE or actinide cation and (ii) Zr or Ti cation) in the pyrochlore and perovskite structure. Vieillard [34] showed the dependence of a cation on the oxygen affinity by the difference of electronegativity between cation and oxygen. Previous authors have developed empirical relationship between Gibbs free energy of formation from constituent oxides and the oxygen affinity of cation for crystalline solids [35โ38]. The entropies of formation from constituent oxides () were estimated in this article from the empirical parameter by minimizing the difference between experimental entropies [39, 40] and the calculated entropies of formation from constituent oxides as The estimated and coefficients for titanate pyrochlores (Figure 3) are โ58.47 and โ0.2162 () and for zirconate pyrochlores (Figure 4) are 71.07 and โ0.2162 (). The total error in the free energies of formation using thus estimated is within 0.5โkJ/mol.
The estimated Gibbs free energies of formation for the titanate perovskite and the zirconate perovskite are shown in Figures 5 and 6. The calculated (from (4)) standard state Gibbs free energies of formation using the experimentally measured enthalpy and estimated entropy values and the estimated standard Gibbs free energies of formation for the zirconate perovskites (M_{2}(Zr_{2}O_{3})_{3}) and for the titanate (M_{2}Ti_{2}O_{7}) and zirconate (M_{2}Zr_{2}O_{7}) pyrochlore families are listed in Table 4.
 
Cationic radii are from [41]. Values of of the cations were calculated using values obtained from [42, 43] as described in [30]. The calculated of the perovskite and pyrochlore solid crystals are from (4) by the thermochemical cycles shown in Table 2. The estimated values of the perovskite and pyrochlore solid crystals are from (1). Calculated values of the solid titanate pyrochlore solid crystals are from (8) using the estimated of the solids. All calculations are at 25ยฐC and 1โbar. 
5. Effect of Cations on the Formation of Solids
Using the estimated linear free energies of formation for the perovskite phases and the pyrochlore phases and the formation energies for rutile (TiO_{2}) and zirconia (ZrO_{2}), the effect of cations on the energies of the following pyrochlore formation reactions at room temperature were characterized:
The Gibbs free energies (across the reactions in (8) are all negative (Table 4). All pyrochlore phases are expected to be stable with respect to, and even at room temperature. The zircon pyrochlores in (9) are less stable by 50.09โkJ/mol than the titanate pyrochlores at room temperature. These findings are consistent with the findings from previous studies. The reaction energies by (8) and the experimentally measured enthalpies of formation from constituent oxides used to calculate the free energies are shown in Figure 7. The calculated reaction energies show that large cations (e.g., La, Ce, and Pr) form more stable pyrochlores than small cations (e.g., Lu, Tm, and Er) (Figure 7). The relationship between ionic radii of the cations and the formation energies is nonlinear as shown by previous studies [21].
Several mixed oxides in the Ln_{2}ScNbO_{7} series, with Ln = Pr, Eu, Gd, and Dy, were synthesized and found to crystallize in the cubic pyrochlore structure [44]. Ce pyrochlore has been synthesized by sintering oxides of CeO_{2}, CaTiO_{3}, and TiO_{2} [45]. These experimental observations are consistent with our prediction of the negative Gibbs free energy changes across reaction in (8). Although the reaction energy calculation is based on room temperature, the prediction is basically consistent with experimental observation at higher temperatures.
6. Conclusions
The linear free energy relationship of Sverjensky and Molling was used to calculate the Gibbs free energies of formation of pyrochlore mineral phases (M_{2}Ti_{2}O_{7} and M_{2}Zr_{2}O_{7}) from known thermodynamic properties of the corresponding aqueous trivalent cations of several lanthanides and actinides. The coefficients for the structural family of pyrochlore with the stoichiometry of M_{2}Ti_{2}O_{7} are estimated to be = 0.084, = โ3640โkJ/mol, and = 82.30โkJ/molโnm and those for the M_{2}Zr_{2}O_{7} are estimated to be = 0.083, = โ3920โkJ/mol, and = 83.18โkJ/molโnm. Thermodynamic properties of fictive mineral phases can also be predicted from this method. These fictive phases cannot be synthesized in the laboratory or occur in the nature, but their thermodynamic properties are required for the immobilization reaction construction of solid solution models for actual crystalline phases. The estimation method is superior because the estimated Gibbs free energies of formation of zirconate and titanate pyrochlore phases are validated with experimentally measured enthalpy and entropy data.
References
 R. G. Dosch, T. J. Headley, C. J. Northrup, and P. F. Hlava, โProcessing, microstructure, leaching, and longterm stability studies related to titanate high level waste forms,โ Sandia National Laboratories Report Sandia822980, 1982. View at: Google Scholar
 A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins, and E. J. Ramm, โSynroc,โ in Radioactive Waste Forms for the Future, W. Lutze and R. C. Ewing, Eds., p. 233, NorthHolland, Amsterdam, The Netherlands, 1988. View at: Google Scholar
 A. Jostsons, E. R. Vance, D. J. Mercer, and V. M. Oversby, in Scientific Basis for Nuclear Waste Management XVIII, T. Murakami and R. C. Ewing, Eds., p. 775, Materials Research Society, Pittsburgh, Pa, USA, 1995.
 R. C. Ewing, W. J. Weber, and W. Lutze, โCrystalline ceramics: waste forms for the disposal of weapons plutonium,โ in Disposal of Excess Weapons Plutonium as Waste, E. R. Merz and C. E. Walter, Eds., NATO ASI Series, p. 65, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at: Google Scholar
 W. J. Weber, R. C. Ewing, and W. Lutze, โPerformance assessment of zircon as a waste form for excess weapons plutonium under deep borehole burial,โ in Scientific Basis for Nuclear Waste Management XIX, W. M. Murphy and D. A. Knecht, Eds., vol. 412, pp. 25โ32, Proceedings of Materials Research Society, 1996. View at: Google Scholar
 A. J. Bakel, E. C. Buck, and B. Ebbinghaus, Plutonium Future—The Science, vol. 135, Los Alamos National Laboratories, 1997.
 B. D. Begg and E. R. Vance, in Scientific Basis for Nuclear Waste Management, W .J. Gray and I. R. Triay, Eds., vol. 20, p. 333, 1997.
 B. D. Begg, E. R. Vance, R. A. Day, M. Hambley, and S. D. Conradson, in Scientific Basis for Nuclear Waste Management, W. J. Gray and I. R. Triay , Eds., vol. 20, p. 325, 1997.
 P. J. Wilde and C. R. A. Catlow, โMolecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate,โ Solid State Ionics, vol. 112, no. 34, pp. 185โ195, 1998. View at: Google Scholar
 A. M. Sych, S. U. Stefanovich, U. A. Titov, T. N. Bondarenko, and V. M. Mel'nik, Journal of Inorganic Materials, vol. 27, no. 12, p. 229, 1991.
 J. H. Lee and Y. M. Chiang, โPressureinduced pyrochloreperovskite phase transformation in PLZST ceramics,โ Journal of Electroceramics, vol. 6, no. 1, pp. 7โ12, 2001. View at: Publisher Site  Google Scholar
 R. J. Cava, โDielectric materials for applications in microwave communications,โ Journal of Materials Chemistry, vol. 11, no. 1, pp. 54โ62, 2001. View at: Publisher Site  Google Scholar
 J. P. Mercurio, A. Lambachri, and B. Frit, Science Ceramic Symposium Proceedings, vol. 14, p. 967, 1988.
 W. J. Weber, J. W. Wald, and H. Matzke, โEffects of selfradiation damage in Cmdoped Gd_{2}Ti_{2}O_{7} and CaZrTi_{2}O_{7},โ Journal of Nuclear Materials, vol. 138, no. 23, pp. 196โ209, 1986. View at: Google Scholar
 A. F. Wells, Structural Inorganic Chemistry, vol. 2, Clarendon, Oxford, UK, 1986.
 R. P. Turcotte, J. W. Wald, F. P. Roberts, J. M. Rusin, and W. Lutze, โRadiation damage in nuclear waste ceramics,โ Journal of the American Ceramic Society, vol. 65, no. 12, pp. 589โ593, 1982. View at: Google Scholar
 R. C. Ewing, W. J. Weber, and J. Lian, โNuclear waste disposalpyrochlore (A2B2O 7): nuclear waste form for the immobilization of plutonium and "minor" actinides,โ Journal of Applied Physics, vol. 95, no. 11 I, pp. 5949โ5971, 2004. View at: Publisher Site  Google Scholar
 R. L. Putnam, A. Navrosky, B. F. Woodfield, J. L. Shapiro, R. Stevens, and J. BoerioGoates, in Scientific Basis for Nuclear Waste Management XXII, D. Wronkiewicz, Ed., vol. 556, Proceedings of Materials Research Society, 1999.
 B. F. Woodfield, J. L. Shapiro, R. Stevens et al., โMolar heat capacity and thermodynamic functions for CaTiO_{3},โ Journal of Chemical Thermodynamics, vol. 31, no. 12, pp. 1573โ1583, 1999. View at: Google Scholar
 Y. N. Paputskii, V. A. Krzhizhanovskaya, and V. B. Glushkova, Neorganicheskie Materialy, vol. 10, no. 8, p. 1551, 1974.
 K. B. Helean, S. V. Ushakov, C. E. Brown et al., โFormation enthalpies of rare earth titanate pyrochlores,โ Journal of Solid State Chemistry, vol. 177, no. 6, pp. 1858โ1866, 2004. View at: Publisher Site  Google Scholar
 J. E. Greedan, โFrustrated rare earth magnetism: spin glasses, spin liquids and spin ices in pyrochlore oxides,โ Journal of Alloys and Compounds, vol. 408—412, pp. 444โ455, 2006. View at: Publisher Site  Google Scholar
 M. A. Subramanian and A. W. Sleight, โChapter 107 Rare earth pyrochlores,โ Handbook on the Physics and Chemistry of Rare Earths, vol. 16, pp. 225โ248, 1993. View at: Publisher Site  Google Scholar
 O. Exner, Correlation Analysis of Chemical Data, Plenum, New York, NY, USA, 1988.
 P. R. Wells, Linear Free Energy Relationships, Academic Press, London, UK, 1968.
 L. P. Hammett, Physical Organic Chemistry, McGillHill, New York, NY, USA, 1970.
 D. A. Sverjensky and P. A. Molling, โA linear free energy relationship for crystalline solids and aqueous ions,โ Nature, vol. 356, no. 6366, pp. 231โ234, 1992. View at: Google Scholar
 D. A. Sverjensky, โLinear free energy relations for predicting dissolution rates of solids,โ Nature, vol. 358, no. 6384, pp. 310โ313, 1992. View at: Google Scholar
 A. J. Ragavan, โLinear free energy relationship applied to trivalent cations with lanthanum and actinium oxide and hydroxide structure,โ Journal of Nuclear Materials, vol. 358, no. 1, pp. 47โ51, 2006. View at: Publisher Site  Google Scholar
 A. J. Ragavan and D. V. Adams, โEstimation of equilibrium surface precipitation constants for trivalent metal sorption onto hydrous ferric oxide and calcite,โ Journal of Nuclear Materials, vol. 389, no. 3, pp. 394โ401, 2009. View at: Publisher Site  Google Scholar
 L. A. Reznitskii, โFormation enthalpies of Nb(IV,V) oxide compounds,โ Inorganic Materials, vol. 37, no. 5, pp. 491โ495, 2001. View at: Google Scholar
 CRC Handbook of Chemistry and Physics, CRC Press, 90th edition, 2010.
 L. R. Morss, โThermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions,โ Chemical Reviews, vol. 76, no. 6, pp. 827โ841, 1976. View at: Google Scholar
 P. Vieillard, โA new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale,โ Clays and Clay Minerals, vol. 48, no. 4, pp. 459โ473, 2000. View at: Google Scholar
 Y. Tardy and L. Gartner, โRelationships among Gibbs energies of formation of sulfates, nitrates, carbonates, oxides and aqueous ions,โ Contributions to Mineralogy and Petrology, vol. 63, pp. 89โ102, 1977. View at: Google Scholar
 Y. Tardy and P. Vieillard, โRelationships among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions,โ Contributions to Mineralogy and Petrology, vol. 63, pp. 75โ88, 1977. View at: Google Scholar
 P. Vieillard, โGeochimie des phosphates : etude thermodynamique : application a la genese et a l'alteration des apatites,โ Sciences Geologiques Memoire, vol. 51, p. 181, 1978. View at: Google Scholar
 S. Gaboreau and P. Vieillard, โPrediction of Gibbs free energies of formation of minerals of the alunite supergroup,โ Geochimica et Cosmochimica Acta, vol. 68, no. 16, pp. 3307โ3316, 2004. View at: Publisher Site  Google Scholar
 L. A. Reznitskii, โEntropy of change in the coordination number of the Zirconium ion and the Gibbs Free energy of formation of some rare earth Zirconates,โ Inorganic Materials, vol. 31, no. 4, pp. 573โ574, 1995. View at: Google Scholar
 L. A. Reznitskii, โEntropies of change of the coordination of the cations Sm, Eu, Gd, Tb and Dy in an oxygen environment,โ Inorganic Materials, vol. 68, no. 9, pp. 1720โ1721, 1994. View at: Google Scholar
 R. D. Shannon, โRevised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,โ Acta Crystallographica, vol. 32, pp. 751โ767, 76. View at: Google Scholar
 E. L. Shock and H. C. Helgeson, โCalculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C,โ Geochimica et Cosmochimica Acta, vol. 52, no. 8, pp. 2009โ2036, 1988. View at: Google Scholar
 D. G. Brookins, EhpH Diagrams for Geochemistry, Springer, Berlin, Germany, 1988.
 S. Zouari, R. Ballou, A. CheikhRouhou, and P. Strobel, โSynthesis and structure of new pyrochloretype oxides Ln_{2}ScNbO_{7} (Ln = Pr, Nd, Eu, Gd, Dy),โ Materials Letters, vol. 62, no. 2122, pp. 3767โ3769, 2008. View at: Publisher Site  Google Scholar
 H. Xu and Y. Wang, โUse of linear free energy relationship to predict Gibbs free energies of formation of pyrochlore phases (CaMTi_{2}O_{7}),โ Journal of Nuclear Materials, vol. 275, no. 2, pp. 216โ220, 1999. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2011 Anpalaki J. Ragavan and Dean V. Adams. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.