Table of Contents
ISRN Applied Mathematics
Volume 2011 (2011), Article ID 682381, 9 pages
http://dx.doi.org/10.5402/2011/682381
Research Article

Analytical Solution for the Differential Equation Containing Generalized Fractional Derivative Operators and Mittag-Leffler-Type Function

Department of Mathematics, University of Rajasthan, Jaipur 302004, India

Received 26 March 2011; Accepted 10 May 2011

Academic Editor: M. F. El-Sayed

Copyright © 2011 V. B. L. Chaurasia and Ravi Shanker Dubey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. R. Hilfer, “Fractional time evolution,” in Applications of Fractional Calculus in Physics, R. Hilfer, Ed., pp. 87–130, World Scientific Publishing, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. R. Hilfer, “Experimental evidence for fractional time evolution in glass forming materials,” Chemical Physics, vol. 284, no. 1-2, pp. 399–408, 2002. View at Publisher · View at Google Scholar
  4. R. Hilfer, “Threefold Introduction to fractional derivatives,” in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov, Eds., pp. 17–73, Wiley-VCH Verlag, Weinheim, Germany, 2008. View at Google Scholar
  5. R. Hilfer and L. Anton, “Fractional master equations and fractal time random walks,” Physical Review E, vol. 51, no. 2, pp. R848–R851, 1995. View at Publisher · View at Google Scholar
  6. R. Hilfer, Y. Luchko, and Ž. Tomovski, “Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives,” Fractional Calculus & Applied Analysis, vol. 12, no. 3, pp. 299–318, 2009. View at Google Scholar · View at Zentralblatt MATH
  7. F. Mainardi and R. Gorenflo, “Time-fractional derivatives in relaxation processes: a tutorial survey,” Fractional Calculus and Applied Analysis, vol. 10, no. 3, pp. 269–308, 2007. View at Google Scholar · View at Zentralblatt MATH
  8. T. Sandev and Ž. Tomovski, “The general time fractional wave equation for a vibrating string,” Journal of Physics. A. Mathematical and Theoretical, vol. 43, no. 5, 2010. View at Publisher · View at Google Scholar
  9. H. M. Srivastava and Ž. Tomovski, “Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,” Applied Mathematics and Computation, vol. 211, no. 1, pp. 198–210, 2009. View at Publisher · View at Google Scholar
  10. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, vol. 2, McGraw-Hill, London, UK, 1954. View at Zentralblatt MATH
  11. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, New York, NY, USA, 1993.
  12. J. Liouville, “Mémoire sur quelques quéstions de géometrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions,” École Polytechnique, vol. 13, no. 21, pp. 1–69, 1832. View at Google Scholar
  13. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, vol. 1, McGraw-Hill, London, UK, 1954. View at Zentralblatt MATH
  14. R. Gorenflo, F. Mainardi, and H. M. Srivastava, “Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena,” in Proceedings of the 8th International Colloquium on Differential Equations, D. Bainov, Ed., pp. 195–202, VSP, Plovdiv, Bulgaria, August 1997. View at Zentralblatt MATH
  15. A. A. Kilbas, M. Saigo, and R. K. Saxena, “Solution of Volterra integrodifferential equations with generalized Mittag-Leffler function in the kernels,” Journal of Integral Equations and Applications, vol. 14, no. 4, pp. 377–396, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler function and generalized fractional calculus operators,” Integral Transforms and Special Functions, vol. 15, no. 1, pp. 31–49, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.
  18. R. Hilfer and H. Seybold, “Computation of the generalized Mittag-Leffler function and its inverse in the complex plane,” Integral Transforms and Special Functions, vol. 17, no. 9, pp. 637–652, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. H. J. Seybold and R. Hilfer, “Numerical results for the generalized Mittag-Leffler function,” Fractional Calculus and Applied Analysis, vol. 8, no. 2, pp. 127–139, 2005. View at Google Scholar · View at Zentralblatt MATH
  20. T. R. Prabhakar, “A singular integral equation with a generalized Mittag Leffler function in the kernel,” Yokohama Mathematical Journal, vol. 19, pp. 7–15, 1971. View at Google Scholar · View at Zentralblatt MATH
  21. H. M. Srivastava and R. K. Saxena, “Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel,” Journal of Integral Equations and Applications, vol. 17, no. 2, pp. 199–217, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, p. 77, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, NY, USA, 1951.