Table of Contents
ISRN Organic Chemistry
Volume 2011 (2011), Article ID 738361, 7 pages
http://dx.doi.org/10.5402/2011/738361
Research Article

Synthesis, Characterization, Thermal Properties, and Antimicrobial Activities of 5-(Diethylamino)-2-(5-nitro-1H-benzimidazol-2-yl)phenol and Its Transition Metal Complexes

Department of Intermediate and Dyestuff Technology, Institute of Chemical Technology (Formerly UDCT), N. P. Marg, Matunga, Maharashtra, Mumbai 400 019, India

Received 15 April 2011; Accepted 14 May 2011

Academic Editors: T. Kurtan, G. Li, and T. Ogiku

Copyright © 2011 Vikas S. Padalkar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. C. Huang, J. P. Zhang, and X. M. Chen, “A new route to supramolecular isomers via molecular templating: nanosized molecular polygons of copper(I) 2-methylimidazolates,” Journal of the American Chemical Society, vol. 126, no. 41, pp. 13218–13219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. P. Tong, S. L. Zheng, and X. M. Chen, “Syntheses, structures, and luminescent properties of isomorphous hydroxo-bridged aluminum(III) and indium(III) compounds with 2-(2-hydroxyphenyl)benzimidazole,” Australian Journal of Chemistry, vol. 59, no. 9, pp. 653–656, 2006. View at Publisher · View at Google Scholar
  3. Y. P. Tong, S. L. Zheng, and X. M. Chen, “Syntheses, structures, photoluminescence and theoretical studies of two dimeric Zn(II) compounds with aromatic N,O-chelate phenolic ligands,” Journal of Molecular Structure, vol. 826, no. 2-3, pp. 104–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. P. Tong and S. L. Zheng, “Synthesis, structure, spectroscopic properties, DFT and TDDFT investigations of copper(II) complex with 2-(2-hydroxyphenyl)benzimidazole,” Journal of Molecular Structure, vol. 841, no. 1–3, pp. 34–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Rüther, K. J. Cavell, N. C. Braussaud, B. W. Skelton, and A. H. White, “Synthesis, characterisation and catalytic behaviour of a novel class of chromium(III) and vanadium(III) complexes containing bi- and tri-dentate imidazole chelating ligands: a comparative study,” Journal of the Chemical Society, no. 24, pp. 4684–4693, 2002. View at Google Scholar · View at Scopus
  6. R. Rajan, R. Rajaram, B. U. Nair, T. Ramasami, and S. K. Mandal, “Synthesis, characterisation and superoxide dismutase activity of a manganese(II) complex,” Journal of the Chemical Society, no. 9, pp. 2019–2021, 1996. View at Google Scholar · View at Scopus
  7. T. J. Cardwell, A. J. Edwards, R. M. Hartshorn, R. J. Holmes, and W. D. McFadyen, “Structural and electrochemical studies of some cobalt (III) complexes of 2-aminomethylbenzimidazole and 2-(N-methylaminomethyl) benzimidazole,” Australian Journal of Chemistry, vol. 50, no. 10, pp. 1009–1015, 1997. View at Google Scholar · View at Scopus
  8. Y. P. Tong and Y. W. Lin, “Synthesis, X-ray crystal structure, DFT- and TDDFT-based spectroscopic property investigations on a mixed-ligand chromium(III) complex, bis[2-(2-hydroxyphenyl)benzimidazolato]-(1,10-phenanthroline)chromium(III) isophthalate,” Inorganica Chimica Acta, vol. 362, no. 7, pp. 2167–2171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Ogawa, O. K. Abou-Zied, V. Tsui, R. Jimenez, R. A. Case, and F. E. Romesberg, “A phototautomerizable model DNA base pair,” Journal of the American Chemical Society, vol. 122, no. 41, pp. 9917–9920, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Reyzer, J. S. Brodbelt, S. M. Kerwin, and D. Kumar, “Evaluation of complexation of metal-mediated DNA-binding drugs to oligonucleotides via electrospray ionization mass spectrometry,” Nucleic Acids Research, vol. 29, no. 21, p. 103, 2001. View at Google Scholar · View at Scopus
  11. A. R. Porcari, R. V. Devivar, L. S. Kucera, J. C. Drach, and L. B. Townsend, “Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)- 2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6- trichloro-1-(β-D-ribofuranosyl)benzimidazole,” Journal of Medicinal Chemistry, vol. 41, no. 8, pp. 1252–1262, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Roth, M. L. Morningstar, P. L. Boyer, S. M. Hughes, R. W. Buckheit, and C. J. Michejda, “Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles,” Journal of Medicinal Chemistry, vol. 40, no. 26, pp. 4199–4207, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. Migawa, J. L. Girardet, J. A. Walker et al., “Design, synthesis, and antiviral activity of α-nucleosides: D- and L- isomers of lyxofuranosyl- and (5-deoxylyxofuranosyl)benzimidazoles,” Journal of Medicinal Chemistry, vol. 41, no. 8, pp. 1242–1251, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Tamm, “Inhibition of influenza and mumps virus multiplication by 4,5,6- (or 5,6,7-) trichloro-1-β-D-ribofuranosylbenzimidazole,” Science, vol. 120, no. 3125, pp. 847–848, 1954. View at Publisher · View at Google Scholar
  15. A. H. Muhaimeed, “A parallel-group comparison of astemizole and loratadine for the treatment of perennial allergic rhinitis,” Journal of International Medical Research, vol. 25, no. 4, pp. 175–181, 1997. View at Google Scholar · View at Scopus
  16. G. Cohn, “Zur kenntniss des o-amidophenetidins,” Berichte der Deutschen Chemischen Gesellschaft, vol. 32, no. 2, pp. 2239–2242, 1899. View at Google Scholar
  17. L. J. Scott, C. J. Dunn, G. Mallarkey, and M. Sharpe, “Esomeprazole: a review of its use in the management of acid-related disorders,” Drugs, vol. 62, no. 10, pp. 1503–1538, 2002. View at Google Scholar · View at Scopus
  18. S. Saluja, R. Zou, J. C. Drach, and L. B. Townsend, “Structure-activity relationships among 2-substituted 5,6-dichloro-, 4,6-dichloro-, and 4,5-dichloro-1-[(2-hydroxyethoxy)methyl]- and -1-[(1,3-dihydroxy-2-propoxy)methyl]benzimidazoles,” Journal of Medicinal Chemistry, vol. 39, no. 4, pp. 881–891, 1996. View at Google Scholar · View at Scopus
  19. H. Zarrinmayeh, D. M. Zimmerman, B. E. Cantrell et al., “Structure-activity relationship of a series of diaminoalkyl substituted benzimidazole as neuropeptide Y Y1 receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 5, pp. 647–652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Antonini, F. Claudi, G. Cristalli, P. Franchetti, M. Grifantini, and S. Martelli, “Heterocyclic quinones with potential antitumor activity. 2. Synthesis and antitumor activity of some benzimidazole-4,7-dione derivatives,” Journal of Medicinal Chemistry, vol. 31, no. 1, pp. 260–264, 1988. View at Google Scholar · View at Scopus
  21. E. B. Skibo and W. G. Schulz, “Pyrrolo[1,2-a]benzimidazole-based aziridinyl quinones. A new class of DNA cleaving agent exhibiting G and A base specificity,” Journal of Medicinal Chemistry, vol. 36, no. 21, pp. 3050–3055, 1993. View at Google Scholar · View at Scopus
  22. E. B. Skibo, “The discovery of the pyrrolo[1,2-a]benzimidazole antitumor agents—The design of selective antitumor agents,” Current Medicinal Chemistry, vol. 3, no. 1, pp. 47–78, 1996. View at Google Scholar
  23. R. Zhou and E. B. Skibo, “Chemistry of the pyrrolo[1,2-a]benzimidazole antitumor agents: influence of the 7-substituent on the ability to alkylate DNA and inhibit topoisomerase II,” Journal of Medicinal Chemistry, vol. 39, no. 21, pp. 4321–4331, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. W. A. Craigo, B. W. LeSueur, and E. B. Skibo, “Design of highly active analogues of the pyrrolo[1,2-a]benzimidazole antitumor agents,” Journal of Medicinal Chemistry, vol. 42, no. 17, pp. 3324–3333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Janssens, J. Torremans, M. Janssen, R. Stokbroekx, M. Luyckx, and P. A. Janssen, “New antihistaminic N-heterocyclic 4-piperidinamines. 1. Synthesis and antihistaminic activity of N-(4-piperidinyl)-1H-benzimidazol-2-amines,” Journal of Medicinal Chemistry, vol. 28, no. 12, pp. 1925–1933, 1985. View at Google Scholar · View at Scopus
  26. H. Nakano, T. Inoue, N. Kawasaki et al., “Synthesis and biological activities of novel antiallergic agents with 5- lipoxygenase inhibiting action,” Bioorganic and Medicinal Chemistry, vol. 8, no. 2, pp. 373–380, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Zarrinmayeh, A. M. Nunes, P. L. Ornstein et al., “Synthesis and evaluation of a series of novel 2-[(4- chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists,” Journal of Medicinal Chemistry, vol. 41, no. 15, pp. 2709–2719, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. National Committee for Clinical Laboratory Standards, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7-A4, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 2000.
  29. L. M. Koeth, A. King, H. Knight et al., “Comparison of cation-adjusted Mueller-Hinton with iso-sensitest broth for the NCCLS broth microdilution method,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 3, pp. 369–376, 2000. View at Google Scholar · View at Scopus
  30. S. D. Sarker, L. Nahar, and Y. Kumarasamy, “Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals,” Methods, vol. 42, no. 4, pp. 321–324, 2007. View at Publisher · View at Google Scholar · View at Scopus