Table of Contents
ISRN Neurology
Volume 2011 (2011), Article ID 845453, 7 pages
http://dx.doi.org/10.5402/2011/845453
Clinical Study

A Comprehensive Study of Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease

Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan

Received 28 April 2011; Accepted 19 June 2011

Academic Editor: A. Martinuzzi

Copyright © 2011 Hideki Kimura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kimura, M. Kurimura, M. Wada et al., “Female preponderance of Parkinson's disease in Japan,” Neuroepidemiology, vol. 21, no. 6, pp. 292–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Arawaka, M. Wada, S. Goto et al., “The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson's disease,” Journal of Neuroscience, vol. 26, no. 36, pp. 9227–9238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Karube, M. Sakamoto, S. Arawaka et al., “N-terminal region of α-synuclein is essential for the fatty acid-induced oligomerization of the molecules,” FEBS Letters, vol. 582, no. 25-26, pp. 3693–3700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Machiya, S. Hara, S. Arawaka et al., “Phosphorylated α-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner,” Journal of Biological Chemistry, vol. 285, no. 52, pp. 40732–40744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Arawak, Y. Machiya, and T. Kato, “Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded proteins in neurodegenerative diseases,” Current Pharmaceutical Biotechnology, vol. 11, no. 2, pp. 158–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pascual-Leone, J. Valls-Solé, J. P. Brasil-Neto, A. Cammarota, J. Grafman, and M. Hallett, “Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation,” Neurology, vol. 44, no. 5, pp. 892–898, 1994. View at Google Scholar · View at Scopus
  7. H. Shimamoto and M. Shigemori, “Therapeutic effect of repetitive transcranial magnetic stimulation,” Shinkei Naika, vol. 51, no. 5, pp. 419–425, 1999 (Japanese). View at Google Scholar
  8. J. Mally and T. W. Stone, “Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation,” Journal of the Neurological Sciences, vol. 162, no. 2, pp. 179–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. R. Siebner, C. Mentschel, C. Auer, and B. Conrad, “Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease,” NeuroReport, vol. 10, no. 3, pp. 589–594, 1999. View at Google Scholar · View at Scopus
  10. T. Fukudome, H. Goto, H. Izumoto, H. Matsuo, and N. Shibuya, “The effects of repetitive transcranial magnetic stimulation (rTMS) in the patients with Parkinson's disease,” Rinsho Shinkeigaku, vol. 42, no. 1, pp. 35–37, 2002 (Japanese). View at Google Scholar · View at Scopus
  11. J. Málly, R. Farkas, L. Tóthfalusi, and T. W. Stone, “Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson's disease,” Brain Research Bulletin, vol. 64, no. 3, pp. 259–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Ghabra, M. Hallett, and E. M. Wassermann, “Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD,” Neurology, vol. 52, no. 4, pp. 768–770, 1999. View at Google Scholar · View at Scopus
  13. F. Tergau, E. M. Wassermann, W. Paulus, and U. Ziemann, “Lack of clinical improvement in patients with Parkinson's disease after low and high frequency repetitive transcranial magnetic stimulation,” Electroencephalography and Clinical Neurophysiology. Supplement, vol. 51, pp. 281–288, 1999. View at Google Scholar · View at Scopus
  14. S. Okabe, Y. Ugawa, and I. Kanazawa, “0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in parkinson's disease,” Movement Disorders, vol. 18, no. 4, pp. 382–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kimura, Y. Mano, Y. Ugawa et al., “Proposals for safety and clinical application of high frequency transcranial magnetic stimulation,” Nouha to Kindenzu, vol. 27, no. 3, p. 306, 1999 (Japanese). View at Google Scholar
  16. K. Kurita, M. Wada, M. Kurimura, T. Kawanami, and T. Kato, “An actigraphy study on the activity of caregivers for patients with neurodegenerative diseases,” Annual Report of the Research Committee of Medico-Welfare Network Construction for Supporting Severely Disabled Patients with Specific Diseases, pp. 127–129, 1999. View at Google Scholar
  17. T. H. Monk, D. J. Buysse, and L. R. Rose, “Wrist actigraphic measures of sleep in space,” Sleep, vol. 22, no. 7, pp. 948–954, 1999. View at Google Scholar · View at Scopus
  18. T. N. Tombaugh and N. J. McIntyre, “The mini-mental state examination: a comprehensive review,” Journal of the American Geriatrics Society, vol. 40, no. 9, pp. 922–935, 1992. View at Google Scholar · View at Scopus
  19. R. Rosenberg, “Outcome measures of antidepressive therapy,” Acta Psychiatrica Scandinavica. Supplementum, vol. 101, no. 402, pp. 41–44, 2000. View at Google Scholar · View at Scopus
  20. M. Scheinin, W. H. Chang, K. L. Kirk, and M. Linnoila, “Simultaneous determination of 3-methoxy-4-hydroxyphenylglycol, 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid with high-performance liquid chromatography using electrochemical detection,” Analytical Biochemistry, vol. 131, no. 1, pp. 246–253, 1983. View at Google Scholar · View at Scopus
  21. K. Vermuyten, A. Lowenthal, and D. Karcher, “Detection of neuron specific enolase concentrations in cerebrospinal fluid from patients with neurological disorders by means of a sensitive enzyme immunoassay,” Clinica Chimica Acta, vol. 187, no. 2, pp. 69–78, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. R. G. Souza, V. Borges, S. M. C. D. A. Silva, and H. B. Ferraz, “Quality of life scale in Parkinson's disease: PDQ-39—(Brazilian Portuguese version) to assess patients with and without levodopa motor fluctuation,” Arquivos de Neuro-Psiquiatria, vol. 65, no. 3B, pp. 787–791, 2007. View at Google Scholar · View at Scopus
  23. I. Zerr, M. Bodemer, S. Räcker et al., “Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease,” The Lancet, vol. 345, no. 8965, pp. 1609–1610, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Hay, J. A. Royds, and G. A.B. Davies-Jones, “Cerebrospinal fluid enolase in stroke,” Journal of Neurology Neurosurgery and Psychiatry, vol. 47, no. 7, pp. 724–729, 1984. View at Google Scholar
  25. J. Gumpert, D. Sharpe, and G. Curzon, “Amine metabolites in the cerebrospinal fluid in Parkinson's disease and the response to levodopa,” Journal of the Neurological Sciences, vol. 19, no. 1, pp. 1–12, 1973. View at Google Scholar · View at Scopus
  26. G. E. Alexander, M. R. DeLong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Annual Review of Neuroscience, vol. 9, pp. 357–381, 1986. View at Google Scholar · View at Scopus
  27. G. E. Alexander and M. D. Crutcher, “Functional architecture of basal ganglia circuits: neural substrates of parallel processing,” Trends in Neurosciences, vol. 13, no. 7, pp. 266–271, 1990. View at Google Scholar · View at Scopus
  28. M. R. DeLong, “Primate models of movement disorders of basal ganglia origin,” Trends in Neurosciences, vol. 13, no. 7, pp. 281–285, 1990. View at Google Scholar · View at Scopus