International Scholarly Research Notices

International Scholarly Research Notices / 2012 / Article

Research Article | Open Access

Volume 2012 |Article ID 103534 | 7 pages | https://doi.org/10.5402/2012/103534

The Effect of Accelerators and Mix Constituents on the High Early Strength Concrete Properties

Academic Editor: M. Maslehuddin
Received24 Feb 2012
Accepted15 May 2012
Published15 Jul 2012

Abstract

The present research study focused on the high early strength concrete properties that can be produced with large replacement of cement by fly ash. Also, the effects of adding fibres on the compressive strength gain and early age strength gain properties are determined. Tests were conducted on different high strength concrete specimens, where fly ash was substituted for cement up to 50%. Different types of concrete specimens were casted and tested for different fine-to-coarse aggregate ratio, metallic fibre content, cement-to-total-aggregate ratio, and accelerator dosage. The test results indicated that high early strength concrete (50.7 MPa at 7 days) was obtained for higher F/C ratio of 0.8, C/TA ratio of 0.24, and higher dosage level of steel fibre at 1.5%.

1. Introduction

High-early-strength-based cementitious materials are of vital importance for the present expanding civil infrastructure. However, the deterioration of civil infrastructure all over the world has led to the realization that cementitious materials must be improved in terms of their engineering property and durability. The use of admixtures such as fly ash has little effect on pozzolanic properties to improve the engineering properties of fly-ash-substituted concrete. In a structural concrete durability should be high, as presented by water-to-binder ratio (W/B). A concrete structure is said to be durable if it withstands the conditions for which it has been designed, without deterioration for the entire period of life [15]. However, use of chlorides may cause corrosion in steel reinforcing and is prohibited in some countries, so that calcium nitrates can be potentially used to achieve high early strength concrete. These techniques are especially useful in the prefabrication industry, wherein high early age strength enables the removal of the formwork within 24 hours, thereby reducing the cycle time, resulting in cost-saving benefits [6]. Pozzolana increases the later age strength of concrete as it reacts with calcium hydroxide and turns it into calcium-silicate-hydrates (C-S-H). However, Portland pozzolana cements have higher activation energy and, therefore, their rate of hydration is lower as compared to ordinary Portland cements [7]. In a similar context, the addition of steel fibers improves the concrete matrix in all mechanical properties of concrete such as compressive strength, spilt tensile strength, flexural strength, and toughness. Steel-fiber-reinforced concrete is made for cement-based composite material reinforced with randomly distributed steel fibers diameter. It contains pozzolans and admixtures commonly used in pavement construction in civil works [8]. In this similar area of research, it can be observed from earlier studies that the durability properties of concrete is not affected in the case of high early age strength gain in concrete [9]. Also, the addition of mineral and chemical admixtures contributed towards the increase in the rate of strength gain and showed an improvement in the 1 day compressive strength upto 30 MPa which can be sufficient for early removal of formwork [10, 11]. It can be noted that both compressive strength and UPV of all the samples increased especially for samples containing fly ash. The relationship between UPV and compressive strength was found to be exponential for mineral admixtures [12]. The nondestructive testing using ultrasonic testing technique was further extended to study the steel-fiber-reinforced cementitious materials to predict the influence of volume fraction and fibre geometry on the engineering properties of concrete. The present study is aimed at exploring the strength characteristics of cementitious system, containing steel fibers, fly ash, and accelerator at different dosages. Also, the rate of hardening was monitored using a portable ultrasonic pulse velocity tester.

2. Materials and Experimental Methods

Ordinary Portland cement of 53 grade having 28-day compressive strength of 54.9 MPa, satisfying the requirements of IS: 12269-1987 was used. The specific gravity of cement was found to be 3.12. Fine aggregates obtained from locally available river sand passing through 4.75 mm IS sieve conforming to grading zone II of IS: 383-1978 was used. It has fineness modulus of 2.60, a specific gravity of 2.69, and water absorption of 0.97% at 24 hours. Coarse aggregates of crushed blue granite stone with 12.5 mm maximum size conforming to IS: 383-1978 was used. The specific gravity was found to be 2.75, fineness modulus 6.5, and water absorption 0.62% at 24 hours. A sulphonated naphthalene formaldehyde based superpalsticizer was used in the study which conforms to ASTM type F and IS: 9103-1999. Specific gravity of SNF was 1.20. Fibers conforming to ASTM A820-01 were used, end hooked steel fibers were used at dosage levels of 0.5 and 1.5% by volume fraction of concrete, the diameter of steel fibres was 0.5 mm, length was 30 mm and its aspect ratio (l/d) of 60, ultimate tensile strength was 900 MPa, and elastic modulus was 210 GPa. An accelerator was used to obtain a high early strength concrete at dosage level of 1% by weight of cement. The concrete mixture proportions used in the study are provided in Table 1. The total 16 different concrete mixtures were proportioned based on the cement-to-total-aggregate ratio (C/TA) 0.24 and 0.26, water-to-cement ratio (W/C) 0.3 and 0.4, and fine-to-coarse-aggregate ratio (F/C) 0.6 and 0.8. The concrete mixtures were mixed using a 40-liter container with tilting drum type mixer, and specimens were cast using steel mould, the standard cube (100 × 100 × 100 mm) moulds, and cylinders (100 mm diameter × 200 mm height) and compacted with table vibrator. For each mix at least three specimens were remoulded 24 hours after casting and water-cured at 2 7 ± 2 °C until the age of testing of 1, 3, 7, 14, 28, and 56 days. All the specimens were cured in the same curing tank to maintain uniform curing for all the specimens.


Mix IdW/C ratioF/C ratioC/TA ratioFlyash %Fibres %AcceleratorCementFine aggregateCoarse aggregatewater
Kg/m3Kg/m3Kg/m3Kg/m3

M1A10.30.60.26250.514736721113142
M1A20.30.60.26500.514736721113142
M1A30.30.60.26251.514736721113142
M1A40.30.60.26501.514736721113142
M2B10.30.80.24250.514338151019130
M2B20.30.80.24500.514338151019130
M2B30.30.80.24251.514338151019130
M2B40.30.80.24501.514338151019130
M3C10.40.60.26250.514736721113142
M3C20.40.60.26500.514736721113142
M3C30.40.60.26251.514736721113142
M3C40.40.60.26501.514736721113142
M4D10.40.80.24250.514338151019130
M4D20.40.80.24500.514338151019130
M4D30.40.80.24251.514338151019130
M4D40.40.80.24501.514338151019130

3. Experimental Test Results and Discussions

The compressive test results of different concrete mixtures are given in Tables 2 and 3 and shown in Figures 1, 2, 3, 4, and 5. It can be observed that compared to control concrete all the concrete composites containing metallic fibre content showed higher strength. It can also be noted that the variables such as cement-to-aggregate-ratio and fine to coarse-aggregate-ratio affected the compressive properties greatly when the W/C ratio was 0.3 as observed in Figure 1. Similarly it can be seen from Figures 2 and 5, that compared to 0.3 W/C ratio, 0.4 W/C showed higher strength due to higher F/C (0.8) ratio, whereas the C/TA (0.24) was lower than the lower W/C (0.3) ratio. Also, the same trend was observed for the controlled concrete mix, which resulted in marginal increase in the compressive strength for W/C and C/TA ratio. Also it is well noted that higher F/C ratio used in concrete resulted in higher strength. This can be justified based on the fact that both the parameters C/TA and F/C ratio have significant effect on the improvement the rate of strength gain (as observed in Figures 6, 7, 8, and 9). This can lead to delayed cracking in concrete upon loading. The split tensile properties further showed similar trend as that of compressive strength. The test results on the early age hardening in few hours after demoulding the concrete specimens were recorded and are shown in Table 4. The ultrasonic test results values showed that the strength gain after 1 day exhibited a good increase in pulse velocity and satisfied the IS 13311 (shown in Figure 10). This essentially shows that the good quality concrete was obtained at much earlier period of curing with the addition of accelerator and fibres.


Mix Id W/C ratio F/C ratio Flyash % Fibres % Accelerator %Average compressive strength (MPa) % gain in 7-day gain in 14-day % gain in 56-day Average spilt tensile strength (MPa)
28 days
7 days14 days28 days56 daysstrength compared to 28-daystrength compared to 28-daystrength compared to 28-day

M1A10.30.6250.5141.548.751.352.78195973.61
M1A20.30.6500.5134.341.246.2549.47489943.27
M1A30.30.6251.5146.552.153.454.18798993.58
M1A40.30.6501.5134.936.643.944.57983993.15
M2B10.30.8250.5143.144.747.147.89797973.36
M2B20.30.8500.5134.345.949.450.36993983.24
M2B30.30.8251.5150.752.854.955.192961003.6
M2B40.30.8501.5133.839.643.243.97892983.18
M3C10.40.6250.5137.542.446.847.28091993.21
M3C20.40.6500.5132.337.342.443.17688983.17
M3C30.40.6251.5133.638.944.645.47587983.28
M3C40.40.6501.5132.236.441.743.27787973.27
M4D10.40.8250.5136.741.246.848.17888973.24
M4D20.40.8500.5131.535.841.444.57686933.32
M4D30.40.8251.5132.63642.444.17785963.17
M4D40.40.8501.5130.432.540.242.17681953.15


Mix IdW/C ratioF/C ratioC/TA ratioAverage compressive strength (MPa)% gain in 7-day strength compared to 28-day% gain in 14-day strength compared to 28-day% gain in 28-day strength compared to 56-day
7 days14 days28 days56 days

M1 0.3 0.6 0.2635.437.541.542.8999594
M2 0.3 0.8 0.2439.740.142.345.2949097
M3 0.4 0.6 0.2631.232.436.739.5968893
M4 0.4 0.8 0.2433.436.140.141.9939096


Mix IdCuring days
1st day3rd day7th day14th day28th day56th day

M1A1384040804400442045504720
M1A2386041204370451046054760
M1A3365039404280456045704700
M1A4334036204240452045604580
M2B1320034003980413044554610
M2B2368038204010420044504510
M2B3375039704310455045804600
M2B4398040404280443045904610
M3C1367039804375445045004590
M3C2341037803950401044604620
M3C3327035303740422044154480
M3C4387039604080437045104480
M4D1353039404190407044604630
M4D2347036403930441045204610
M4D3359036104020447045104410
M4D4356036803970410042804520

4. Conclusions

Based on the above experimental investigation, the following conclusions can be drawn. (i)The use of class F flyash and accelerator showed that early age setting properties of concrete can be more useful where high early fast track concreting is required. Also, the addition of metallic content has significant effect on the compressive and split tensile properties of concrete. (ii)The careful selection of different variables such as cement-to-aggregate-ratio and fine to coarse-aggregate-ratio has significant effect as well as cement-to-aggregate-ratio which provided greater improvements in the mechanical properties of concrete.(iii)It is clearly evident that early strength gain in concrete is a function of low water-cement-ratio, F/C ratio, accelerator dosage, and cement-to-total-aggregate ratio. Cement replacement up to 50% fly ash showed early age strength gain slightly lower than concrete made with 25% fly ash. Therefore, concrete mixes containing class F ash can be used up to 50% safely to produce high early strength concrete for precast products.(iv)It was observed from the test results that the higher strength was obtained for W/C ratio 0.3, F/C ratio 0.8, and C/TA ratio 0.24 with metallic content 1.5% from which the compressive strength at 28 days was 54.9 MPa and a similar trend was noted for lower W/C ratio of 0.3, F/C ratio 0.6, and C/TA ratio 0.26 with higher metallic content 1.5% from which the test result value for 28 days was 53.4 MPa. It can be concluded that higher fine-to-coarse-aggregates ratio and metallic fiber content up to 1.5% showed higher strength. The addition of accelerator has direct effect on the early strength gain and resulted in attaining the 28 days in a short duration of 7 days.

References

  1. T. R. Naik and B. W. Ramme, “Low cement content high strength concrete,” Cement and Concrete Research, vol. 17, no. 2, pp. 283–294, 1987. View at: Google Scholar
  2. K. Ganesh Babu and G. Siva Nageswara Rao, “Efficiency of fly ash in concrete with age,” Cement and Concrete Research, vol. 26, no. 3, pp. 465–474, 1996. View at: Google Scholar
  3. BIS (Bureau of Indian Standards), “Specification for 53grade Ordinary Portland cement,” IS 12269-1987, New Delhi, India, 1987. View at: Google Scholar
  4. BIS (Bureau of Indian Standards), “Non-destructive testing of concrete Part 1 Ultrasonic pulse velocity,” IS 13311-1992, New Delhi, India, 1992. View at: Google Scholar
  5. ACI Committee 544, “Guide for specifying, mixing, placing and finishing steel fiber reinforced concrete,” ACI 544. 3R- 95, American Concrete Institute, Detroit, Mich, USA, 2006. View at: Google Scholar
  6. P. S. Song and S. Hwang, “Mechanical properties of high-strength steel fiber-reinforced concrete,” Construction and Building Materials, vol. 18, no. 9, pp. 669–673, 2004. View at: Publisher Site | Google Scholar
  7. S. R. Parimi and J. K. S. Rao, “Effectiveness of random fibres in fibre-reinforced concrete mechanical behaviour of materials,” in Proceeding International Conference on Mechanical Behaviour of Materials, vol. 5, pp. 176–186, 1971. View at: Google Scholar
  8. P. Rossi, “Mechanical behaviour of metal-fibre reinforced concretes,” Cement and Concrete Composites, vol. 14, no. 1, pp. 3–16, 1992. View at: Google Scholar
  9. A. E. Naaman and H. Hammoud, “Fatigue characteristics of high performance fiber-reinforced concrete,” Cement and Concrete Composites, vol. 20, no. 5, pp. 353–363, 1998. View at: Google Scholar
  10. C. Huang and G. Zhao, “Properties of steel fibre reinforced concrete containing larger coarse aggregate,” Cement and Concrete Composites, vol. 17, no. 3, pp. 199–206, 1995. View at: Google Scholar
  11. S. M. Mohammed and B. Mohamed, “Properties of concrete reinforced with different kinds of industrial waste fibre materials,” Construction and Building Materials, vol. 23, no. 10, pp. 3196–3205, 2009. View at: Publisher Site | Google Scholar
  12. J. H. Bungey, “The validity of ultrasonic pulse velocity testing of in-place concrete for strength,” NDT International, vol. 13, no. 6, pp. 296–300, 1980. View at: Google Scholar

Copyright © 2012 V. M. Sounthararajan and A. Sivakumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

9298 Views | 845 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.