Table of Contents
ISRN Cell Biology
Volume 2012, Article ID 130360, 12 pages
http://dx.doi.org/10.5402/2012/130360
Review Article

Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors

1Epigenomic Medicine, Baker IDI Heart & Diabetes Institute, Alfred Medical Research and Education Precinct, Melbourne, VIC 8008, Australia
2Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia

Received 25 September 2011; Accepted 12 October 2011

Academic Editors: A. Hergovich and R. S. Samant

Copyright © 2012 Katherine Ververis and Tom C. Karagiannis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. V. G. Allfrey, R. Faulkner, and A. E. Mirsky, “Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis,” Proceedings of the National Academy of Sciences of the United States of, vol. 51, no. 5, pp. 786–794, 1964. View at Google Scholar
  3. V. G. Allfrey and A. E. Mirsky, “Structural modifications of histones and their possible role in the regulation of RNA synthesis,” Science, vol. 144, no. 3618, p. 559, 1964. View at Google Scholar · View at Scopus
  4. M. Dokmanovic, C. Clarke, and P. A. Marks, “Histone deacetylase inhibitors: overview and perspectives,” Molecular Cancer Research, vol. 5, no. 10, pp. 981–989, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. H. Kuo and C. D. Allis, “Roles of histone acetyltransferases and deacetylases in gene regulation,” BioEssays, vol. 20, no. 8, pp. 615–626, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Wade, D. Pruss, and A. P. Wolffe, “Histone acetylation: chromatin in action,” Trends in Biochemical Sciences, vol. 22, no. 4, pp. 128–132, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Roth, J. M. Denu, and C. D. Allis, “Histone acetyltransferases,” Annual Review of Biochemistry, vol. 70, pp. 81–120, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. B. C. Smith and J. M. Denu, “Chemical mechanisms of histone lysine and arginine modifications,” Biochimica et Biophysica Acta, vol. 1789, no. 1, pp. 45–57, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. J. M. de Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003. View at Publisher · View at Google Scholar · View at PubMed
  10. I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, “Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis,” Journal of Molecular Biology, vol. 338, no. 1, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at PubMed
  11. S. Minucci and P. G. Pelicci, “Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer,” Nature Reviews Cancer, vol. 6, no. 1, pp. 38–51, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. J. Landry, A. Sutton, S. T. Tafrov et al., “The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5807–5811, 2000. View at Publisher · View at Google Scholar · View at PubMed
  13. K. G. Tanner, J. Landry, R. Sternglanz, and J. M. Denu, “Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14178–14182, 2000. View at Publisher · View at Google Scholar · View at PubMed
  14. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes and Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. W. M. Yang, Y. L. Yao, J. M. Sun, J. R. Davie, and E. Seto, “Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family,” Journal of Biological Chemistry, vol. 272, no. 44, pp. 28001–28007, 1997. View at Publisher · View at Google Scholar
  16. J. Taunton, C. A. Hassig, and S. L. Schreiber, “A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p,” Science, vol. 272, no. 5260, pp. 408–411, 1996. View at Google Scholar
  17. W. M. Yang, C. Inouye, Y. Zeng, D. Bearss, and E. Seto, “Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 12845–12850, 1996. View at Publisher · View at Google Scholar
  18. C. M. Grozinger, C. A. Hassig, and S. L. Schreiber, “Three proteins define a class of human histone deacetylases related to yeast Hda1p,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 4868–4873, 1999. View at Publisher · View at Google Scholar
  19. H. Y. Kao, M. Downes, P. Ordentlich, and R. M. Evans, “Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression,” Genes and Development, vol. 14, no. 1, pp. 55–66, 2000. View at Google Scholar
  20. E. Hu, Z. Chen, T. Fredrickson et al., “Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15254–15264, 2000. View at Publisher · View at Google Scholar · View at PubMed
  21. X. Zhou, P. A. Marks, R. A. Rifkind, and V. M. Richon, “Cloning and characterization of a histone deacetylase, HDAC9,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10572–10577, 2001. View at Publisher · View at Google Scholar · View at PubMed
  22. J. J. Tong, J. Liu, N. R. Bertos, and X. J. Yang, “Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain,” Nucleic Acids Research, vol. 30, no. 5, pp. 1114–1123, 2002. View at Google Scholar
  23. L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002. View at Publisher · View at Google Scholar · View at PubMed
  24. P. A. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller, and W. K. Kelly, “Histone deacetylases and cancer: causes and therapies,” Nature Reviews Cancer, vol. 1, no. 3, pp. 194–202, 2001. View at Google Scholar
  25. P. A. Marks, “Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions,” Biochimica et Biophysica Acta, vol. 1799, no. 10-12, pp. 717–725, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. A. Marks and W. S. Xu, “Histone deacetylase inhibitors: potential in cancer therapy,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 600–608, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Namdar, G. Perez, L. Ngo, and P. A. Marks, “Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20003–20008, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, and S. L. Schreiber, “Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4389–4394, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. B. Parmigiani, W. S. Xu, G. Venta-Perez et al., “HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9633–9638, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. X. Zhang, Z. Yuan, Y. Zhang et al., “HDAC6 modulates cell motility by altering the acetylation level of cortactin,” Molecular Cell, vol. 27, no. 2, pp. 197–213, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Villagra, F. Cheng, H. W. Wang et al., “The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance,” Nature Immunology, vol. 10, no. 1, pp. 92–100, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Yoshida, M. Kijima, M. Akita, and T. Beppu, “Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A,” Journal of Biological Chemistry, vol. 265, no. 28, pp. 17174–17179, 1990. View at Google Scholar · View at Scopus
  33. M. Dokmanovic and P. A. Marks, “Prospects: histone deacetylase inhibitors,” Journal of Cellular Biochemistry, vol. 96, no. 2, pp. 293–304, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. P. A. Marks and R. Breslow, “Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug,” Nature Biotechnology, vol. 25, no. 1, pp. 84–90, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. P. A. Marks, “The clinical development of histone deacetylase inhibitors as targeted anticancer drugs,” Expert Opinion on Investigational Drugs, vol. 19, no. 9, pp. 1049–1066, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Campàs-Moya, “Romidepsin for the treatment of cutaneous t-cell lymphoma,” Drugs of Today, vol. 45, no. 11, pp. 787–795, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Göttlicher, S. Minucci, P. Zhu et al., “Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells,” The EMBO Journal, vol. 20, no. 24, pp. 6969–6978, 2002. View at Publisher · View at Google Scholar · View at PubMed
  38. R. A. Blaheta and J. Cinatl, “Anti-tumor mechanisms of valproate: a novel role for an old drug,” Medicinal Research Reviews, vol. 22, no. 5, pp. 492–511, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. C. U. Johannessen, “Mechanisms of action of valproate: a commentatory,” Neurochemistry International, vol. 37, no. 2-3, pp. 103–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Rosenberg, “The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2090–2103, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. R. W. Johnstone, “Histone-deacetylase inhibitors: novel drugs for the treatment of cancer,” Nature Reviews Drug Discovery, vol. 1, no. 4, pp. 287–299, 2002. View at Google Scholar · View at Scopus
  43. W. K. Kelly and P. A. Marks, “Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid,” Nature Clinical Practice Oncology, vol. 2, no. 3, pp. 150–157, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. W. Tang, T. Luo, E. F. Greenberg, J. E. Bradner, and S. L. Schreiber, “Discovery of histone deacetylase 8 selective inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 9, pp. 2601–2605, 2011. View at Publisher · View at Google Scholar · View at PubMed
  45. A. Banerjee, C. M. Trivedi, G. Damera et al., “Trichostatin a abrogates airway constriction, but not inflammation in mouse and human asthma models,” American Journal of Respiratory Cell and Molecular Biology. In press.
  46. J. H. Choi, S. W. Oh, M. S. Kang, H. J. Kwon, G. T. Oh, and D. Y. Kim, “Trichostatin A attenuates airway inflammation in mouse asthma model,” Clinical and Experimental Allergy, vol. 35, no. 1, pp. 89–96, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. C. L. Antos, T. A. McKinsey, M. Dreitz et al., “Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 28930–28937, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. Backs and E. N. Olson, “Control of cardiac growth by histone acetylation/deacetylation,” Circulation Research, vol. 98, no. 1, pp. 15–24, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. Haberland, R. L. Montgomery, and E. N. Olson, “The many roles of histone deacetylases in development and physiology: implications for disease and therapy,” Nature Reviews Genetics, vol. 10, no. 1, pp. 32–42, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. Y. Kong, P. Tannous, G. Lu et al., “Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy,” Circulation, vol. 113, no. 22, pp. 2579–2588, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. T. A. McKinsey, E. N. Olson, and Berger, “Dual roles of histone deacetylases in the control of cardiac growth,” Novartis Foundation Symposium, vol. 259, pp. 132–145, 2004. View at Google Scholar · View at Scopus
  52. D. M. Chuang, Y. Leng, Z. Marinova, H. J. Kim, and C. T. Chiu, “Multiple roles of HDAC inhibition in neurodegenerative conditions,” Trends in Neurosciences, vol. 32, no. 11, pp. 591–601, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. E. Touma, J. S. Goldberg, P. Moench et al., “Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model,” Clinical Cancer Research, vol. 11, no. 9, pp. 3558–3566, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. B. Briggs, K. Ververis, A. L. Rodd, L. J. L. Foong, F. M. D. Silva, and T. C. Karagiannis, “Photosensitization by iodinated DNA minor groove binding ligands: evaluation of DNA double-strand break induction and repair,” Journal of Photochemistry and Photobiology B, vol. 103, no. 2, pp. 145–152, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. F. A. A. Kwa, A. Balcerczyk, P. Licciardi, A. El-Osta, and T. C. Karagiannis, “Chromatin modifying agents—the cutting edge of anticancer therapy,” Drug Discovery Today, vol. 16, no. 13-14, pp. 543–547, 2011. View at Publisher · View at Google Scholar · View at PubMed
  56. M. Bots and R. W. Johnstone, “Rational combinations using HDAC inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3970–3977, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. D. Gore, “Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies,” Nature Clinical Practice Oncology, vol. 2, supplement 1, pp. S30–S35, 2005. View at Publisher · View at Google Scholar · View at PubMed
  58. G. N. Hortobagyi, “Anthracyclines in the treatment of cancer. An overview,” Drugs, vol. 54, no. 4, pp. 1–7, 1997. View at Google Scholar · View at Scopus
  59. R. C. Young, R. F. Ozols, and C. E. Myers, “The anthracycline antineoplastic drugs,” The New England Journal of Medicine, vol. 305, no. 3, pp. 139–153, 1981. View at Google Scholar · View at Scopus
  60. L. Pan, J. Lu, X. Wang et al., “Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression,” Cancer, vol. 109, no. 8, pp. 1676–1688, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. H. Rho, D. Y. Kang, K. J. Park et al., “Doxorubicin induces apoptosis with profile of large-scale DNA fragmentation and without DNA ladder in anaplastic thyroid carcinoma cells via histone hyperacetylation,” International Journal of Oncology, vol. 27, no. 2, pp. 465–471, 2005. View at Google Scholar · View at Scopus
  62. M. G. Catalano, N. Fortunati, M. Pugliese et al., “Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells,” Journal of Endocrinology, vol. 191, no. 2, pp. 465–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. E. R. Sampson, V. Amin, E. M. Schwarz, R. J. O'Keefe, and R. N. Rosier, “The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy,” Journal of Orthopaedic Research, vol. 29, no. 4, pp. 623–632, 2011. View at Publisher · View at Google Scholar · View at PubMed
  64. T. C. Karagiannis, H. Kn, and A. El-Osta, “Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments,” Oncogene, vol. 26, no. 27, pp. 3963–3971, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. L. Sprigg, A. Li, F. Y. M. Choy, and J. Ausió, “Interaction of daunomycin with acetylated chromatin,” Journal of Medicinal Chemistry, vol. 53, no. 17, pp. 6457–6465, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. Y. Tabe, M. Konopleva, R. Contractor et al., “Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells,” Blood, vol. 107, no. 4, pp. 1546–1554, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. S. Hauswald, J. Duque-Afonso, M. M. Wagner et al., “Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes,” Clinical Cancer Research, vol. 15, no. 11, pp. 3705–3715, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. Kim, S.-N. Kim, Y.-S. Park et al., “HDAC inhibitors downregulate MRP2 expression in multidrug resistant cancer cells: implication for chemosensitization,” International Journal of Oncology, vol. 38, no. 3, pp. 807–812, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. G. Wu, C. Nan, J. C. Rollo, X. Huang, and J. Tian, “Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase,” Journal of Biomedical Science, vol. 17, no. 1, article 16, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. M. H. Shah, P. Binkley, K. Chan et al., “Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors,” Clinical Cancer Research, vol. 12, no. 13, pp. 3997–4003, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. T. C. Karagiannis, A. J. Lin, K. Ververis et al., “Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes,” Aging, vol. 2, no. 10, pp. 659–668, 2010. View at Google Scholar
  72. K. Ververis, A. L. Rodd, M. M. Tang, A. El-Osta, and T. C. Karagiannis, “Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes,” Cellular and Molecular Life Sciences, vol. 68, no. 24, pp. 4101–4114, 2011. View at Publisher · View at Google Scholar · View at PubMed
  73. E. Salvatorelli, S. Guarnieri, P. Menna et al., “Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart: relative importance of vesicular sequestration and impaired efficiency of electron addition,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 10990–11001, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. D. J. Cao, Z. V. Wang, P. K. Battiprolu et al., “Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4123–4128, 2011. View at Publisher · View at Google Scholar · View at PubMed
  75. Y. K. Cho, G. H. Eom, H. J. Kee et al., “Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats,” Circulation Journal, vol. 74, no. 4, pp. 760–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. H. J. Bogaard, S. Mizuno, A. A. Al Hussaini et al., “Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 10, pp. 1402–1410, 2011. View at Publisher · View at Google Scholar · View at PubMed
  77. C. M. Arundel and J. T. Leith, “Effects of nucleoside analogs and sodium butyrate on recovery from potentially lethal X ray damage in human colon tumor cells,” International Journal of Radiation Oncology Biology Physics, vol. 13, no. 4, pp. 593–601, 1987. View at Google Scholar · View at Scopus
  78. J. T. Leith, “Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X radiation,” Radiation Research, vol. 114, no. 1, pp. 186–191, 1988. View at Google Scholar · View at Scopus
  79. C. M. Arundel, A. S. Glicksman, and J. T. Leith, “Enhancement of radiation injury in human colon tumor cells by the maturational agent sodium butyrate (NaB),” Radiation Research, vol. 104, no. 3, pp. 443–448, 1985. View at Google Scholar · View at Scopus
  80. Y. L. Chung, Y. H. W. Lee, S. H. Yen, and K. H. Chi, “A novel approach for nasopharyngeal carcinoma treatment uses phenylbutyrate as a protein kinase C modulator: implications for radiosensitization and EBV-targeted therapy,” Clinical Cancer Research, vol. 6, no. 4, pp. 1452–1458, 2000. View at Google Scholar · View at Scopus
  81. S. Biade, C. C. Stobbe, J. T. Boyd, and J. D. Chapman, “Chemical agents that promote chromatin compaction radiosensitize tumour cells,” International Journal of Radiation Biology, vol. 77, no. 10, pp. 1033–1042, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. Furumai, Y. Komatsu, N. Nishino, S. Khochbin, M. Yoshida, and S. Horinouchi, “Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 87–92, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. A. Munshi, J. F. Kurland, T. Nishikawa et al., “Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity,” Clinical Cancer Research, vol. 11, no. 13, pp. 4912–4922, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. J. H. Kim, J. H. Shin, and I. H. Kim, “Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 4, pp. 1174–1180, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. R. V. Nome, A. Bratland, G. Harman, O. Fodstad, Y. Andersson, and A. H. Ree, “Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death,” Molecular Cancer Therapeutics, vol. 4, no. 8, pp. 1231–1238, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. Y. Zhang, M. Jung, A. Dritschilo, and M. Jung, “Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors,” Radiation Research, vol. 161, no. 6, pp. 667–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Jung, A. Velena, B. Chen, P. A. Petukhov, A. P. Kozikowski, and A. Dritschilo, “Novel HDAC inhibitors with radiosensitizing properties,” Radiation Research, vol. 163, no. 5, pp. 488–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. T. C. Karagiannis, K. N. Harikrishnan, and A. El-Osta, “The histone deacetylase inhibitor, trichostatin A, enhances radiation sensitivity and accumulation of γH2A.X,” Cancer Biology and Therapy, vol. 4, no. 7, pp. 787–793, 2005. View at Google Scholar · View at Scopus
  89. K. Camphausen, D. Cerna, T. Scott et al., “Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid,” International Journal of Cancer, vol. 114, no. 3, pp. 380–386, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. P. Chinnaiyan, G. Vallabhaneni, E. Armstrong, S. M. Huang, and P. M. Harari, “Modulation of radiation response by histone deacetylase inhibition,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 223–229, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. Y. Zhang, M. Adachi, X. Zhao, R. Kawamura, and K. Imai, “Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells,” International Journal of Cancer, vol. 110, no. 2, pp. 301–308, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. K. Camphausen, T. Scott, M. Sproull, and P. J. Tofilon, “Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation,” Clinical Cancer Research, vol. 10, no. 18, pp. 6066–6071, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. K. Camphausen, W. Burgan, M. Cerra et al., “Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275,” Cancer Research, vol. 64, no. 1, pp. 316–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. C. S. Chen, Y. C. Wang, H. C. Yang et al., “Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation,” Cancer Research, vol. 67, no. 11, pp. 5318–5327, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. J. E. Shabason, P. J. Tofilon, and K. Camphausen, “Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic,” Journal of Cellular and Molecular Medicine, vol. 15, no. 12, pp. 2735–2744, 2011. View at Publisher · View at Google Scholar · View at PubMed
  96. A. C. Miller, T. Whittaker, A. Thibault, and D. Samid, “Modulation of radiation response of human tumour cells by the differentiation inducers, phenylacetate and phenylbutyrate,” International Journal of Radiation Biology, vol. 72, no. 2, pp. 211–218, 1997. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. L. Chung, A. J. Wang, and L. F. Yao, “Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: implications for increasing therapeutic gain in cancer radiotherapy,” Molecular Cancer Therapeutics, vol. 3, no. 3, pp. 317–325, 2004. View at Google Scholar · View at Scopus
  98. L. Paoluzzi and W. D. Figg, “Histone deacetylase inhibitors are potent radiation protectants,” Cancer Biology and Therapy, vol. 3, no. 7, pp. 612–613, 2004. View at Google Scholar · View at Scopus
  99. A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Fedorocko, A. Egyed, and A. Vacek, “Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung,” International Journal of Radiation Biology, vol. 78, no. 4, pp. 305–313, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. K. Randall and J. E. Coggle, “Long-term expression of transforming growth factor TGFβ1 in mouse skin after localized β-irradiation,” International Journal of Radiation Biology, vol. 70, no. 3, pp. 351–360, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Delanian, M. Martin, A. Bravard, C. Luccioni, and J.-L. Lefaix, “Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage,” Radiotherapy and Oncology, vol. 47, no. 3, pp. 255–261, 1998. View at Publisher · View at Google Scholar
  103. S. L. Brown, A. Kolozsvary, J. Liu, S. Ryu, and H. K. Jae, “Histone deacetylase inhibitors protect against and mitigate the lethality of total-body irradiation in mice,” Radiation Research, vol. 169, no. 4, pp. 474–478, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. A. C. Miller, S. Cohen, M. Stewart, R. Rivas, and P. Lison, “Radioprotection by the histone deacetylase inhibitor phenylbutyrate,” Radiation and Environmental Biophysics, vol. 50, no. 4, pp. 585–596, 2011. View at Publisher · View at Google Scholar · View at PubMed