Table of Contents
ISRN Toxicology
Volume 2012, Article ID 130846, 7 pages
http://dx.doi.org/10.5402/2012/130846
Research Article

Herbicide Metolachlor Causes Changes in Reproductive Endocrinology of Male Wistar Rats

1Department of Pharmacy, State University of Centro-Oeste, R. Simeao Camargo Varela de Sa, 03, 85040-080 Guarapuava, PR, Brazil
2Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 Sao Paulo, SP, Brazil

Received 9 February 2012; Accepted 28 February 2012

Academic Editors: S. M. Waliszewski and K. Yamasaki

Copyright © 2012 Francielle Tatiane Mathias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Kelce and E. M. Wilson, “Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications,” Journal of Molecular Medicine, vol. 75, no. 3, pp. 198–207, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. A. LeBlanc, L. J. Bain, and V. S. Wilson, “Pesticides: multiple mechanisms of demasculinization,” Molecular and Cellular Endocrinology, vol. 126, no. 1, pp. 1–5, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Kavlock, G. P. Daston, C. DeRosa et al., “Research needs for the risk assessment of health and environmental effects of endocrine disrupters: a report of the U.S. EPA-sponsored workshop,” Environmental Health Perspectives, vol. 104, no. 4, pp. 715–740, 1996. View at Google Scholar · View at Scopus
  4. T. V. McDaniel, P. A. Martin, J. Struger et al., “Potential endocrine disruption of sexual development in free ranging male northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans) from areas of intensive row crop agriculture,” Aquatic Toxicology, vol. 88, no. 4, pp. 230–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. E. Arbuckle, Z. Lin, and L. S. Mery, “An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population,” Environmental Health Perspectives, vol. 109, no. 8, pp. 851–857, 2001. View at Google Scholar · View at Scopus
  6. M. Weselak, T. E. Arbuckle, and W. Foster, “Pesticide exposures and developmental outcomes: the epidemiological evidence,” Journal of Toxicology and Environmental Health B, vol. 10, no. 1-2, pp. 41–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Cao, X. Wang, F. Liu, E. Zhao, and L. Han, “Dissipation and residue of S-metolachlor in maize and soil,” Bulletin of Environmental Contamination and Toxicology, vol. 80, no. 5, pp. 391–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Liu, W. Ye, X. Zhan, and W. Liu, “A comparative study of rac- and S-metolachlor toxicity to Daphnia magna,” Ecotoxicology and Environmental Safety, vol. 63, no. 3, pp. 451–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. O'Connell, C. T. Harms, and J. R. F. Allen, “Metolachlor, S-metolachlor and their role within sustainable weed-management,” Crop Protection, vol. 17, no. 3, pp. 207–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Huntscha, H. Singer, S. Canonica, R. P. Schwarzenbach, and K. Fenner, “Input dynamics and fate in surface water of the herbicide metolachlor and of its highly mobile transformation product metolachlor ESA,” Environmental Science and Technology, vol. 42, no. 15, pp. 5507–5513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Si, K. Takagi, A. Iwasaki, and D. Zhou, “Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils,” Pest Management Science, vol. 65, no. 9, pp. 956–962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. J. Gish, J. H. Prueger, W. P. Kustas et al., “Soil moisture and metolachlor volatilization observations over three years,” Journal of Environmental Quality, vol. 38, no. 5, pp. 1785–1795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Gerhard, A. Frick, B. Monga, and B. Runnebaum, “Pentachlorophenol exposure in women with gynecological and endocrine dysfunction,” Environmental Research, vol. 80, no. 4, pp. 383–388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. E. V. Younglai, W. G. Foster, E. G. Hughes, K. Trim, and J. F. Jarrell, “Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization,” Archives of Environmental Contamination and Toxicology, vol. 43, no. 1, pp. 121–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Abell and J. P. Ernst, “Semen quality and sexual hormones in greenhouse workers,” Scandinavian Journal of Work, Environment and Health, vol. 26, no. 6, pp. 492–500, 2000. View at Google Scholar · View at Scopus
  16. J. Auger, J. M. Kunstmann, F. Czyglik, and P. Jouannet, “Decline in semen quality among fertile men in Paris during the past 20 years,” New England Journal of Medicine, vol. 332, no. 5, pp. 281–285, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Irvine, E. Cawood, D. Richardson, E. MacDonald, and J. Aitken, “Evidence of deteriorating semen quality in the United Kingdom: birth cohort study in 577 men in Scotland over 11 years,” British Medical Journal, vol. 312, no. 7029, pp. 467–471, 1996. View at Google Scholar · View at Scopus
  18. C. Campagna, P. Ayotte, M. A. Sirard, G. Arsenault, J. P. Laforest, and J. L. Bailey, “Effect of an environmentally relevant metabolized organochlorine mixture on porcine cumulus-oocyte complexes,” Reproductive Toxicology, vol. 23, no. 2, pp. 145–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. Chedrese and F. Feyles, “The diverse mechanism of action of dichlorodiphenyldichloroethylene (DDE) and methoxychlor in ovarian cells in vitro,” Reproductive Toxicology, vol. 15, no. 6, pp. 693–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. R. M. Romano, M. A. Romano, M. M. Bernardi, P. V. Furtado, and C. A. Oliveira, “Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology,” Archives of Toxicology, vol. 84, no. 4, pp. 309–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Romano, R. M. Romano, L. D. Santos et al., “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression,” Archives of Toxicology, vol. 86, no. 4, pp. 663–673, 2012. View at Google Scholar
  22. M. G. Wade, W. G. Foster, E. V. Younglai et al., “Effects of subchronic exposure to a complex mixture of persistent contaminants in male rats: systemic, immune, and reproductive effects,” Toxicological Sciences, vol. 67, no. 1, pp. 131–143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Laville, P. Balaguer, F. Brion et al., “Modulation of aromatase activity and mRNA by various selected pesticides in the human choriocarcinoma JEG-3 cell line,” Toxicology, vol. 228, no. 1, pp. 98–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. United States Environmental Protection Agency, Reregistration eligibility decision (RED): Metolachlor, 1995, http://www.epa.gov/oppsrrd1/REDs/0001.pdf.
  25. R. M. Parker, “Testing for reproductive toxicity,” in Developmental and Reproductive Toxicology, R. D. Hood, Ed., Taylor and Francis, New York, NY, USA, 2006. View at Google Scholar
  26. J. R. Wisner, J. R. D. Stalvey, and D. W. Warren, “Delay in the age of balano-preputial skinfold cleavage and alterations in serum profiles of testosterone, 5α-androstane-3α-17β-diol, and gonadotropins in adult rats treated during puberty with luteinizing hormone releasing hormone,” Steroids, vol. 41, no. 4, pp. 443–454, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. C. C. Korenbrot, I. T. Huhtaniemi, and R. I. Weiner, “Preputial seperation as an external sign of pubertal development in the male rat,” Biology of Reproduction, vol. 17, no. 2, pp. 298–303, 1977. View at Google Scholar · View at Scopus
  28. J. W. Everett, “Pituitary and hypothalamus: perspectives and overview,” in Knobil and Neill’s Physiology of Reproduction, J. D. Neil, Ed., pp. 1289–1307, Raven Press, New York, NY, USA, 2006. View at Google Scholar
  29. C. W. Bardin and J. F. Catterall, “Testosterone: a major determinant of extragenital sexual dimorphism,” Science, vol. 211, no. 4488, pp. 1285–1294, 1981. View at Google Scholar · View at Scopus
  30. J. F. Knudsen and S. R. Max, “Aromatization of androgens to estrogens mediates increased activity of glucose 6 phosphate dehydrogenase in rat levator ani muscle,” Endocrinology, vol. 106, no. 2, pp. 440–443, 1980. View at Google Scholar · View at Scopus
  31. J. B. Kerr, K. L. Loveland, M. K. O’Bryan, and D. M. de Kretser, “Cytology of the testis and intrinsic control mechanism,” in Knobil and Neill’s Physiology of Reproduction, J. D. Neil, Ed., pp. 829–947, Raven Press, New York, NY, USA, 2006. View at Google Scholar
  32. N. N. Atanassova, M. Walker, C. McKinnell, J. S. Fisher, and R. M. Sharpe, “Evidence that androgens and oestrogens, as well as follicle-stimulating hormone, can alter Sertoli cell number in the neonatal rat,” Journal of Endocrinology, vol. 184, no. 1, pp. 107–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. O. Goyal, A. Robateau, T. D. Braden, C. S. Williams, K. K. Srivastava, and K. Ali, “Neonatal estrogen exposure of male rats alters reproductive functions at adulthood,” Biology of Reproduction, vol. 68, no. 6, pp. 2081–2091, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. T. Akingbemi, “Estrogen regulation of testicular function,” Reproductive Biology and Endocrinology, vol. 3, article 51, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. E. Stoker, L. G. Parks, L. E. Gray, and R. L. Cooper, “Endocrine-disrupting chemicals: pubertal exposures and effects on sexual maturation and thyroid function in the male rat, A focus on the EDSTAC recommendations. Endocrine Disrupting Screening and Testing Advisory Committee,” Critical Reviews in Toxicology, vol. 30, no. 2, pp. 97–252, 2000. View at Google Scholar