Table of Contents
ISRN Renewable Energy
Volume 2012, Article ID 148563, 13 pages
http://dx.doi.org/10.5402/2012/148563
Research Article

Online Hierarchical Controller for Hybrid Power System

Al Baha University, P.O. Box 1988, Al Baha 61008, Saudi Arabia

Received 5 September 2012; Accepted 23 September 2012

Academic Editors: B. Chen and A. Stoppato

Copyright © 2012 Salem Zerkaoui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Chen and W. Jie, “Agent-based energy management and control of a grid-connected wind/solar hybrid power system,” in Proceedings of the 11th International Conference on Electrical Machines and Systems (ICEMS '08), pp. 2362–2365, October 2008. View at Scopus
  2. E. Ortjohann, O. Omari, M. Lingemann et al., “An online control strategy for a modular DC coupled hybrid power system,” in Proceedings of the European Conference on Power Electronics and Applications (EPE '07), September 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Lu, T. Zhou, H. Fakham, and B. Francois, “Design of a power management system for an active PV station including various storage technologies,” in Proceedings of the 13th International Power Electronics and Motion Control Conference (EPE-PEMC '08), Poznan, Poland, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Torres-Hernández and M. Vélez-Reyes, “Hierarchical control of Hybrid Power Systems,” in Proceedings of the 11th IEEE International Conference on Power Electronics Congress (CIEP '08), pp. 169–176, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bilodeau and K. Agbossou, “Control analysis of renewable energy system with hydrogen storage for residential applications,” Journal of Power Sources, vol. 162, no. 2, pp. 757–764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kermani, S. Delprat, R. Trigui, and T. M. Guerra, “Predictive energy management of hybrid vehicle,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '08), September 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Mohebbi, M. Charkhgard, and M. Farrokhi, “Optimal neuro-fuzzy control of parallel hybrid electric vehicles,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '05), pp. 252–256, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Soltani and N. Debbache, “Integration of converter losses in the modelling of hybrid photovoltaic-wind generating system,” European Journal of Scientific Research, vol. 21, no. 4, pp. 707–718, 2008. View at Google Scholar · View at Scopus
  9. R. Belfkira, R. Reghem, J. Raharijaona, G. Barakat, and C. Nichita, “Non linear optimization based design methodology of wind/PV hybrid stand alone system,” in Proceedings of the European Association for Vision and Eye Research (EVER '09), Monaco, France, March 2009.
  10. X. Lu and S. H. Yang, “Solar energy harvesting for ZigBee electronics,” in International Conference on Sustainability in Energy and Buildings, pp. 19–27, Brighton, UK, 2009.
  11. B. Ai, H. Yang, H. Shen, and X. Liao, “Computer-aided design of PV/wind hybrid system,” Renewable Energy, vol. 28, no. 10, pp. 1491–1512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. El Mokadem, C. Nichita, B. Dakyo, and W. Koczara, “Control strategy for a variable load supplied by a wind diesel system,” Electromotion Journal, vol. 10, pp. 635–640, 2003. View at Google Scholar
  13. W. X. Shen, “State of available capacity estimation for lead-acid batteries in electric vehicles using neural network,” Energy Conversion and Management, vol. 48, no. 2, pp. 433–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2721–2735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. Kaldellis and D. Zafirakis, “Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency,” Energy, vol. 32, no. 12, pp. 2295–2305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Copetti, E. Lorenzo, and F. Chenlo, “A general battery model for PV system simulation,” Progress in Photovoltaics: Research and Applications, vol. 1, pp. 283–292, 1993. View at Google Scholar
  17. O. Gergaud, G. Robin, B. Multon, and H. Ben Ahmed, Energy Modeling of a Lead-Acid Battery within Hybrid Wind/Photovoltic Systems, EPE Toulouse, 2003.
  18. A. Sripakagorn and N. Limwuthigraijirat, “Experimental assessment of fuel cell/supercapacitor hybrid system for scooters,” International Journal of Hydrogen Energy, vol. 34, no. 15, pp. 6036–6044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Zerkaoui, A. B. Mboup, D. Lefebvre, F. Guerin, J. Bosche, and A. El Hajjaji, “Sliding mode based control strategy for multi-sources renewable energy system,” in Proceedings of the International Conference on Electric Power and Energy Conversion Systems (EPECS '09), November 2009. View at Scopus
  20. J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zerovoltage-switched PWM converter,” in IEEE Applied Power Electronics Conference and Exposition, pp. 275–284, March 1990.
  21. S. J. Jeon and G. H. Cho, “A zero-voltage and zero-current switching full bridge DC-DC converter with transform isolation,” IEEE Transactions on Power Electronics, vol. 16, no. 5, pp. 573–580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters,” IEE Proceedings, Electric Power Applications, vol. 1526, pp. 1482–1488, 2005. View at Google Scholar
  23. J. Sun and H. Grotstollen, “Symbolic analysis methods for averaged modeling of switching power converters,” IEEE Transactions on Power Electronics, vol. 12, no. 3, pp. 537–546, 1997. View at Google Scholar · View at Scopus
  24. A. B. Mboup, F. Guerin, P. A. Ndiaye, and D. Lefebvre, “Control design for hybrid system based on dc /dc converters duty cycle value,” COMPEL, vol. 30, no. 1, pp. 310–335, 2011. View at Google Scholar
  25. V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212–222, 1977. View at Google Scholar · View at Scopus
  26. A. Hijazi, M. Di Loreto, E. Bideaux, P. Venet, G. Clerc, and G. Rojat, “Sliding mode control of boost converter: application to energy storage system via supercapacitors,” in Proceedings of the 13th European Conference on Power Electronics and Applications (EPE '09), September 2009. View at Scopus
  27. I. S. Kim, “Sliding mode controller for the single-phase grid-connected photovoltaic system,” Applied Energy, vol. 83, no. 10, pp. 1101–1115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Forsyth and S. V. Mollov, “Modelling and control of DC-DC converters,” Power Engineering Journal, vol. 12, no. 5, pp. 229–236, 1998. View at Google Scholar · View at Scopus