Table of Contents
ISRN Applied Mathematics
Volume 2012, Article ID 148607, 18 pages
http://dx.doi.org/10.5402/2012/148607
Research Article

An Inverse Design Method for Cascades for Low-Reynolds Number Flow

University of Technology, Kaiserslautern, 67663 Kaiserslautern, Germany

Received 3 February 2012; Accepted 29 March 2012

Academic Editors: Y. Dimakopoulos, Z. Huang, Z. Mohamed, W. Yeih, and Y.-G. Zhao

Copyright © 2012 Martin Böhle. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. A. Johnson and R. O. Bullock, “Aerodynamic design of axial-flow compressors,” NASA SP-36, 1965. View at Google Scholar
  2. M. Zangeneh, “Compressible 3D design method for radial and mixed flow turbomachinery blades,” International Journal for Numerical Methods in Fluids, vol. 13, no. 5, pp. 599–624, 1991. View at Google Scholar · View at Scopus
  3. W. Schwering, “Design of cascades for incompressible plane potential flows with prescribed velocity distribution,” ASME Journal of Engineering for Power, vol. 93, no. 3, pp. 321–332, 1971. View at Google Scholar · View at Scopus
  4. A. Goto, M. Shirakura, and H. Enomoto, “Compressor cascade optimization based on inverse boundary layer method an inverse cascade method,” Bulletin of the Japan Society of Mechanical Engineers, vol. 27, no. 229, pp. 1366–1377, 1984. View at Google Scholar · View at Scopus
  5. B. Thwaites, “Approximate calculation of the laminar boundary layer,” Aeronautical Quarterly, vol. 1, pp. 245–280, 1949. View at Google Scholar
  6. M. R. Head and V. C. Patel, Improved Entrainment Method for Calculating Turbulent Boundary Layer Development, Reports and Memoranda, no. 3643, Aeronaut Research Council, 1968.
  7. T. Cebeci and J. Cousteix, Modeling and Computation of Boundary-Layer Flows, Horizons Publishing, Long Beach, Calif, USA, 2005.
  8. H. Schlichting, Grenzschicht-Theorie, Verlag und Druck G. Braun, Karlsruhe, Germany, 1982.
  9. R. H. Pletcher, “Prediction of incompressible turbulent separating flow,” ASME Journal of Fluids Engineering, vol. 100, no. 4, pp. 427–433, 1978. View at Google Scholar · View at Scopus
  10. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, London, UK, 2004.
  11. M. Drela and M. B. Giles, “Viscous-inviscid analysis of transonic and low reynolds number airfoils,” AIAA Journal, vol. 25, no. 10, pp. 1347–1355, 1987. View at Google Scholar · View at Scopus
  12. N. Dhawan, “Some properties of boundary layer flow during the transition from laminar to turbulent motion,” Journal of Fluid Mechanics, vol. 3, no. 4, pp. 418–436, 1958. View at Publisher · View at Google Scholar
  13. T. Cebeci, “Kinematic eddy viscosity at low reynolds numbers,” AIAA Journal, vol. 11, no. 1, pp. 102–104, 1973. View at Google Scholar
  14. E. Martensen, Die Berechnung der Druckverteilung an Dicken Gitterprofilen mit Hilfe von Fredholmschen Integralgleichungen zweiter Art, Mitteilungen aus dem Max-Planck-Institut fr Strmungsmechanik und Aerodynamische Versuchsanstalt, Göttingen, Germany, 1959.
  15. R. I. Lewis, Turbomachinery Performance Analysis, John Wiley & Sons, New York, NY, USA, 2004.
  16. FLUENT-Software Package, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766.
  17. J. P. Gostelow, Turbomachinery Performance Analysis, Pergamon, Oxford, UK, 1984.
  18. P. Spalart and S. A. Allmaras, “One-equation turbulence model for aerodynamic flows,” AIAA-Paper 92-0439, 1992. View at Google Scholar
  19. B. S. Stratford, “The prediction of separation of the turbulent boundary layer,” Journal of Fluid Mechanics, vol. 5, no. 1, pp. 1–16, 1959. View at Publisher · View at Google Scholar