Table of Contents
ISRN Bioinformatics
Volume 2012, Article ID 157135, 11 pages
http://dx.doi.org/10.5402/2012/157135
Research Article

Classifying Multigraph Models of Secondary RNA Structure Using Graph-Theoretic Descriptors

1Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN 37614-0663, USA
2Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614-0663, USA

Received 26 August 2012; Accepted 11 September 2012

Academic Editors: J. Arthur and N. Lemke

Copyright © 2012 Debra Knisley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The prediction of secondary RNA folds from primary sequences continues to be an important area of research given the significance of RNA molecules in biological processes such as gene regulation. To facilitate this effort, graph models of secondary structure have been developed to quantify and thereby characterize the topological properties of the secondary folds. In this work we utilize a multigraph representation of a secondary RNA structure to examine the ability of the existing graph-theoretic descriptors to classify all possible topologies as either RNA-like or not RNA-like. We use more than one hundred descriptors and several different machine learning approaches, including nearest neighbor algorithms, one-class classifiers, and several clustering techniques. We predict that many more topologies will be identified as those representing RNA secondary structures than currently predicted in the RAG (RNA-As-Graphs) database. The results also suggest which descriptors and which algorithms are more informative in classifying and exploring secondary RNA structures.