Table of Contents
ISRN Machine Vision
Volume 2012, Article ID 163285, 11 pages
Research Article

Local Stereo Matching Using Adaptive Local Segmentation

Signals and Systems Group, Department of EEMCS, University of Twente, Hallenweg 15, 7522 NH Enschede, The Netherlands

Received 23 March 2012; Accepted 3 May 2012

Academic Editors: A. Bandera, E. Davies, B. K. Gunturk, S. Mattoccia, and Y. Zhuge

Copyright © 2012 Sanja Damjanović et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a dynamic threshold. We define a new validity domain of the frontoparallel assumption based on the local intensity variations in the 4 neighborhoods of the matching pixel. The preprocessing step smoothes low-textured areas and sharpens texture edges, whereas the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical differences and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions. It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images. It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local algorithms relying on the frontoparallel assumption, our algorithm is the best-ranked algorithm. We also demonstrate that our algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face.