Table of Contents Author Guidelines Submit a Manuscript
ISRN Signal Processing
Volume 2012 (2012), Article ID 179087, 11 pages
Research Article

A Probabilistic Approach to Computerized Tracking of Arterial Walls in Ultrasound Image Sequences

1Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester LE3 9QP, UK
2Department of Medical Physics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Sandringham Building, Leicester LE1 5WW, UK

Received 30 October 2012; Accepted 19 November 2012

Academic Editors: Y.-S. Chen, E. Ciaccio, and C. S. Lin

Copyright © 2012 Baris Kanber and Kumar Vids Ramnarine. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tracking of arterial walls in ultrasound image sequences is useful for studying the dynamics of arteries. Manual delineation is prohibitively labour intensive and existing methods of computerized segmentation are limited in terms of applicability and availability. This paper presents a probabilistic approach to the computerized tracking of arterial walls that is effective and easy to implement. In the probabilistic approach, given a point B with a probability of being in an arterial lumen of interest, the probability that a neighbouring point A is also a part of the same lumen is proportional to with a Gaussian fall in probability with increasing grayscale contrast between the two points. Efficacy of the probabilistic algorithm was evaluated by testing it on ultrasound images and image sequences of the carotid arteries and the abdominal aorta and various laboratory, ultrasound test objects. The results showed that the probabilistic algorithm produced robust and effective lumen segmentation in the majority of cases encountered. Comparison with a conventional region growing technique based on intensity thresholding with a running, regional intensity average identified the main benefits of the probabilistic approach as increased immunity to speckle noise within the arterial lumen and a reduced susceptibility to region overflowing at boundary imperfections.