Table of Contents
ISRN Communications and Networking
Volume 2012, Article ID 185472, 8 pages
http://dx.doi.org/10.5402/2012/185472
Research Article

A Reliable and Efficient Highway Multihop Vehicular Broadcast Model

1Institute of Communication Engineering, PLA University of Science and Technology, Nanjing 210007, China
2National Key Laboratory of Automotive Dynamic Simulation, College of Automotive Engineering, Jilin University, Changchum 130025, China

Received 20 September 2011; Accepted 11 October 2011

Academic Editors: M. Listanti and Y. M. Tseng

Copyright © 2012 Deng Chuan and Wang Jian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Y. Chang, Y. Xiang, and M. L. Shi, “Development and status of vehicular ad hoc networks,” Journal on Communications, vol. 28, no. 11, pp. 116–126, 2007. View at Google Scholar · View at Scopus
  2. S. Y. Ni, Y. C. Tseng, and Y. S. Chen, “The broadcast storm problem in a mobile ad hoc network,” in Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 151–162, Seattle, Wash, USA, 1999.
  3. L. Da, H. Huang, X. Li, and F. Tang, “A distance-based directional broadcast protocol for urban vehicular ad hoc network,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, vol. Shanghai, China, pp. 1520–1523, Shanghai, China, 2007.
  4. L. J. Chen, H. Jiang, J. Wu, C. C. Guo, W. P. Xu, and P. L. An, “Research on transmission control on vehicle ad-hoc network,” Journal of Software, vol. 18, no. 6, pp. 1477–1490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Z. Li, J. X. Liao, T. H. Li, and X. M. Zhu, “A contention-based forwarding routing protocol for vehicular ad hoc networks in city scenarios,” Acta Electronica Sinica, vol. 37, no. 12, pp. 2639–2645, 2009. View at Google Scholar · View at Scopus
  6. “P1609.0 IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)- Architecture”.
  7. I. W. Group, “IEEE P 802.11p/D3.0, Draft Amendament for Wireless Access in Vehicular Environments (WAVE),” 2007. View at Google Scholar
  8. T. M. Marc, “Inter-vehicle communications: assessing information dissemination under safety constraints,” in Proceedings of the 4th Annual IEEE/IFIP Conference on Wireless On Demand Network Systems and Services, pp. 59–64, Obergurgl, Austria, 2007.
  9. C. Suthaputchakun, “Priority-based inter-vehicle communication for highway safety messaging using IEEE 802.11e,” International Journal of Vehicular Technology, vol. 2009, Article ID 423141, 12 pages, 2009. View at Publisher · View at Google Scholar
  10. R. Chen, W. Jin, and A. Regan, “Multi-hop broadcasting in vehicular Ad Hoc networks with shockwave traffic,” in Proceedings of the 2nd IEEE Intelligent Vehicular Communications System Workshop, pp. 1–5, Las Vegas, Nev, USA, 2010.
  11. J. R. Francisco, M. R. Pedro, and S. Ivan, “Reliable and efficient broadcasting in vehicular Ad Hoc networks,” in Proceedings of the IEEE Vehicular Technology Conference, pp. 1–5, Barcelona, Spain, 2009.
  12. G. Korkmaz, F. Ekici, F. Ozgoner, and O. Ozgoner, “Urban multi-hop broadcast protocol for inter-vehicle communication systems,” in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, pp. 76–85, Philadelphia, Pa, USA, October 2004. View at Scopus
  13. L. Wischhof, A. Ebner, and H. Rohling, “Information dissemination in self-organizing intervehicle networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp. 90–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Menouar, M. Lenardi, and F. Filali, “A movement prediction based routing protocol for vehicle-to-vehicle communications,” in Proceedings of the International Workshop on Vehicle-to-Vehicle Communications, pp. 1–8, San Diego, Calif, USA, 2005.
  15. F. Granelli, G. Boato, and D. Kliazovich, “MORA: a movement-based routing algorithm for vehicle Ad Hoc networks,” in Proceedings of the IEEE Workshop on Automotive Networking and Applications, pp. 256–265, San Francisco, Calif, USA, 2006.
  16. V. Naumov, R. Baumann, and T. Gross, “An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces,” in Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '06), pp. 108–119, Florence, Italy, May 2006. View at Scopus
  17. M. Sun, W. Feng, T. H. Lai, K. Yamada, H. Okada, and K. Fujimura, “GPS-based message broadcasting for inter-vehicle communication,” in Proceedings of the International Conference on Parallel Processing, pp. 279–286, Toronto, Canada, 2000.
  18. P. Lai, X. Wang, N. Lu, and F. Liu, “A reliable broadcast routing scheme based on mobility prediction for VANET,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1083–1087, Xi’an, China, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Chuan, Y. Peng, B. Davison, and L. Cheng, “Store-and-Forward Performance in a DTN,” in Proceedings of the IEEE Vehicular Technology Conference, pp. 187–191, Melbourne, Australia, 2006.
  20. NS2, http://www.isi.edu/nsnam/ns.
  21. VanetMobiSim, http://vanet.eurecom.fr.