Table of Contents
ISRN Biomathematics
Volume 2012, Article ID 192031, 7 pages
http://dx.doi.org/10.5402/2012/192031
Research Article

Constrained Network Modularity

1Center for Computational Science (CCS), University of Miami, Miami, FL 33136, USA
2Institute of Clinical Physiology (IFC), Laboratory for Integrative Systems Medicine (LISM), National Research Council (CNR), 56124 Pisa, Italy

Received 15 August 2012; Accepted 23 September 2012

Academic Editors: J. Chow and J. M. Peregrin-Alvarez

Copyright © 2012 Enrico Capobianco. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Vidal, “Interactome modeling,” FEBS Letters, vol. 579, no. 8, pp. 1834–1838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Cabusora, E. Sutton, A. Fulmer, and C. V. Forst, “Differential network expression during drug and stress response,” Bioinformatics, vol. 21, no. 12, pp. 2898–2905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Guo, Y. Li, X. Gong et al., “Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network,” Bioinformatics, vol. 23, no. 16, pp. 2121–2128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ideker and N. J. Krogan, “Differential network biology,” Molecular Systems Biology, vol. 8, Article ID 565, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. G. T. Hart, A. K. Ramani, and E. M. Marcotte, “How complete are current yeast and human protein-interaction networks?” Genome Biology, vol. 7, no. 11, article 120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Von Mering, R. Krause, B. Snel et al., “Comparative assessment of large-scale data sets of protein-protein interactions,” Nature, vol. 417, no. 6887, pp. 399–403, 2002. View at Google Scholar · View at Scopus
  7. M. E. Cusick, H. Yu, A. Smolyar et al., “Literature-curated protein interaction datasets,” Nature Methods, vol. 6, no. 1, pp. 39–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Brohée and J. van Helden, “Evaluation of clustering algorithms for protein-protein interaction networks,” BMC Bioinformatics, vol. 7, article 488, p. 119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 36–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Roswall and C. T. Bergstrom, “An information-theoretic framework for resolving community structure in complex networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7327–7331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas, “Characterization of complex networks: a survey of measurements,” Advances in Physics, vol. 56, no. 1, pp. 167–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Reguly, A. Breitkreutz, L. Boucher et al., “Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae,” Journal of Biology, vol. 5, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Durek and D. Walther, “The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles,” BMC Systems Biology, vol. 2, article 100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Huthmacher, C. Gille, and H. G. Holzhütter, “Computational analysis of protein-protein interactions in metabolic networks of Escherichia coli and yeast,” Genome informatics. International Conference on Genome Informatics, vol. 18, pp. 162–172, 2007. View at Google Scholar · View at Scopus
  16. C. Huthmacher, C. Gille, and H. G. Holzhütter, “A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling,” Journal of Theoretical Biology, vol. 252, no. 3, pp. 456–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. I. A. Maraziotis, K. Dimitrakopoulou, and A. Bezerianos, “An in silico method for detecting overlapping functional modules from composite biological networks,” BMC Systems Biology, vol. 2, article 93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-F. Rual, K. Venkatesan, T. Hao et al., “Towards a proteome-scale map of the human protein-protein interaction network,” Nature, vol. 437, no. 7062, pp. 1173–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. V. Missiuro, K. Liu, L. Zou et al., “Information Flow Analysis of Interactome Networks,” PLoS Computational Biology, vol. 5, no. 4, article e1000350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Travaglione, E. Marras, and E. Capobianco, “Dynamic modularization assessment in affine protein interaction networks,” Biostatistics, Bioinformatics, and Biomathematics, vol. 2, no. 3, pp. 137–156, 2011. View at Google Scholar
  21. A.-C. Gavin, P. Aloy, P. Grandi et al., “Proteome survey reveals modularity of the yeast cell machinery,” Nature, vol. 440, no. 7084, pp. 631–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Clauset, “Finding local community structure in networks,” Physical Review E, vol. 72, no. 2, Article ID 026132, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E, vol. 69, Article ID 026113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. G. D. Bader and C. W. Hogue, “An automated method for finding molecular complexes in large protein interaction networks,” BMC Bioinformatics, vol. 4, no. 1, pp. 1–27, 2003. View at Google Scholar · View at Scopus
  25. E. Marras, A. Travaglione, and E. Capobianco, “Sub-modular resolution analysis by network mixture models,” Statistical Applications in Genetics and Molecular Biology, vol. 9, no. 1, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. N. Kolmogorov, “A new invariant for transitive dynamical systems,” Doklady Akademii Nauk SSSR, vol. 119, pp. 861–864, 1958. View at Google Scholar
  27. P. Walters, An Introduction to Ergodic Theory, Springer, New York, NY, USA, 1982.
  28. J. L. Jensen, “Chaotic dynamical systems with a view towards statistics: a review,” in Networks and Chaos—Statistical and Probabilistic Aspects, O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds., pp. 201–250, 1993. View at Google Scholar
  29. E. Capobianco, “On network entropy and bio-interactome applications,” Journal of Computational Science, vol. 2, no. 2, pp. 144–152, 2011. View at Publisher · View at Google Scholar · View at Scopus