Table of Contents
ISRN Optics
Volume 2012, Article ID 193185, 7 pages
http://dx.doi.org/10.5402/2012/193185
Research Article

Effect of Stepwise Replacement of LiF by Bi2O3 and of Annealing on Optical Properties of LiF⋅B2O3 Glasses

1Department of Physics, Maharshi Dayanand University, Rohtak 124 001, India
2Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India

Received 29 December 2011; Accepted 29 January 2012

Academic Editors: M. Farries, L. R. P. Kassab, and Y. Tsuji

Copyright © 2012 Susheel Arora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Boussard-Plédel, M. Le Floch, G. Fonteneau et al., “The structure of a boron oxyfluoride glass, an inorganic cross-linked chain polymer,” Journal of Non-Crystalline Solids, vol. 209, no. 3, pp. 247–256, 1997. View at Google Scholar · View at Scopus
  2. G. D. Chryssikos, M. S. Bitsis, J. A. Kapoutsis, and E. I. Kamitsos, “Vibrational investigation of lithium metaborate-metaaluminate glasses and crystals,” Journal of Non-Crystalline Solids, vol. 217, no. 2-3, pp. 278–290, 1997. View at Google Scholar · View at Scopus
  3. C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Boron oxyfluoride glasses in the BOF system: new polymeric spaghetti-type glasses,” Journal of Non-Crystalline Solids, vol. 188, no. 1-2, pp. 147–152, 1995. View at Google Scholar · View at Scopus
  4. N. Soga, “Elastic moduli and fracture toughness of glass,” Journal of Non-Crystalline Solids, vol. 73, no. 1–3, pp. 305–313, 1985. View at Google Scholar · View at Scopus
  5. I. Z. Hager, “Elastic moduli of boron oxyfluoride glasses: experimental determinations and application of Makishima and Mackenzie's theory,” Journal of Materials Science, vol. 37, no. 7, pp. 1309–1313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Z. Hager and M. El-Hofy, “Investigation of spectral absorption and elastic moduli of lithium haloborate glasses,” Physica Status Solidi (A), vol. 198, no. 1, pp. 7–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Shelby and L. K. Downie, “Properties and structure of sodium fluoroborate glasses,” Physics and Chemistry of Glasses, vol. 30, no. 4, pp. 151–154, 1989. View at Google Scholar · View at Scopus
  8. G. D. Chryssikos, E. I. Kamitsos, A. P. Patsis, M. S. Bitsis, and M. A. Karakassides, “The devitrification of lithium metaborate: polymorphism and glass formation,” Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 42–51, 1990. View at Google Scholar · View at Scopus
  9. E. I. Kamitsos, A. P. Patsis, and G. D. Chryssikos, “Infrared reflectance investigation of alkali diborate glasses,” Journal of Non-Crystalline Solids, vol. 152, no. 2-3, pp. 246–257, 1993. View at Google Scholar · View at Scopus
  10. C. Hwang, S. Fujino, and K. Morinaga, “Density of Bi2O3-B2O3 binary melts,” Journal of the American Ceramic Society, vol. 87, no. 9, pp. 1677–1682, 2004. View at Google Scholar · View at Scopus
  11. I. I. Oprea, H. Hesse, and K. Betzler, “Optical properties of bismuth borate glasses,” Optical Materials, vol. 26, no. 3, pp. 235–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Fujiwara, T. Suzuki, N. Sugimoto, H. Kanbara, and K. Hirao, “THz optical switching in glasses containing bismuth oxide,” Journal of Non-Crystalline Solids, vol. 259, no. 1-3, pp. 116–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Sugimoto, “Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuth oxide glasses,” Journal of the American Ceramic Society, vol. 85, no. 5, pp. 1083–1088, 2002. View at Google Scholar · View at Scopus
  14. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electronics Letters, vol. 41, no. 14, pp. 795–797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Optics Express, vol. 13, no. 18, pp. 6864–6869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. H. Kim, H. L. Park, and S. I. Mho, “Photoluminescence of Eu3+ and Bi3+ IN Na3YSi3O9,” Solid State Communications, vol. 101, no. 2, pp. 109–113, 1997. View at Google Scholar · View at Scopus
  17. A. M. Srivastava, “Luminescence of divalent bismuth in M2+ BPO5 (M2+ = Ba2+, Sr2+ and Ca2+),” Journal of Luminescence, vol. 78, no. 4, pp. 239–243, 1998. View at Google Scholar · View at Scopus
  18. C. Martin, C. Chaumont, J. P. Sanchez, and J. C. Bernier, “Influence of preparation process on physical properties and devitrification of Li2B2O4 (0,9) LiFe5O8 (0,1) glasses,” Journal de Physique Colloques, vol. 46, no. C8, pp. 585–589, 1985. View at Google Scholar
  19. A. M. Harold, “Variations of refractive index of glass with time and temperature in annealing region,” Journal of the American Ceramic Society, vol. 28, no. 1, p. 1, 1945. View at Google Scholar
  20. W. T. Leroy, W. R. Fred, and T. B. Florence, “Refractive uniformity of a borosilicate glass after different annealing treatments,” Journal of Research of the National Bureau of Standards, vol. 49, no. 1, pp. 21–32, 1952. View at Google Scholar
  21. N. V. Surovtsev, J. Wiedersich, A. E. Batalov, V. N. Novikov, M. A. Ramos, and E. Rössler, “Inelastic light scattering in B2O3 glasses with different thermal histories,” Journal of Chemical Physics, vol. 113, no. 14, pp. 5891–5900, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Kartha, M. A. Ittyachen, B. Pradeep, and M. Abdul Khadar, “Effect of annealing on the optical properties of B2O3-Li2O-PbO glass thin films,” Journal of Materials Science Letters, vol. 22, no. 1, pp. 9–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. A. Devis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous emiconductors,” Philosophical Magazine, vol. 22, pp. 0903–0922, 1970. View at Google Scholar
  24. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids,” Physical Review, vol. 92, no. 5, p. 1324, 1953. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Kutub, A. E. Mohamed-Osman, and C. A. Hogarth, “Some studies of the optical properties of copper phosphate glasses containing praseodymium,” Journal of Materials Science, vol. 21, no. 10, pp. 3517–3520, 1986. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Dayanand, G. Bhikshamaiah, and M. Salagram, “IR and optical properties of PbO glass containing a small amount of silica,” Materials Letters, vol. 23, no. 4–6, pp. 309–315, 1995. View at Google Scholar · View at Scopus
  27. K. L. Chopra and S. K. Bahl, “Exponential tail of the optical absorption edge of amorphous semiconductors,” Thin Solid Films, vol. 11, no. 2, pp. 377–388, 1972. View at Google Scholar · View at Scopus