Table of Contents
ISRN Nanomaterials
Volume 2012, Article ID 193836, 8 pages
http://dx.doi.org/10.5402/2012/193836
Review Article

Influence of Nanofinishes on the Antimicrobial Properties of Fabrics

NIFT TEA College of Knitwear Fashion, Tirupur 641 606, India

Received 20 September 2012; Accepted 12 November 2012

Academic Editors: A. Fidalgo, A. A. Ismail, and A. Kelarakis

Copyright © 2012 N. Gokarneshan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Gao and R. Cranston, “Recent advances in antimicrobial treatments of textiles,” Textile Research Journal, vol. 78, no. 1, pp. 60–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Lee and S. H. Jeong, “Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics,” Textile Research Journal, vol. 75, pp. 551–556, 2005. View at Publisher · View at Google Scholar
  3. H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, “A study on multifunctional wool textiles treated with nano-sized silver,” Journal of Materials Science, vol. 42, pp. 8020–8024, 2000. View at Publisher · View at Google Scholar
  4. M. L. Gulrajani, D. Gupta, S. Periyasamy, and S. G. Muthu, “Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties,” Journal of Applied Polymer Science, vol. 108, no. 1, pp. 614–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya, “Functional finishing of cotton fabrics using silver nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 6, pp. 1893–1897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Falletta, M. Bonini, E. Fratini et al., “Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics,” Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11758–11766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. K. Yeo and M. Kang, “Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis,” Bulletin of the Korean Chemical Society, vol. 29, pp. 1179–1184, 2008. View at Publisher · View at Google Scholar
  8. P. Nagendar Reddy, E. M. Pena-Mendez, and J. Havel, “Silver or silver nanoparticles: a hazardous threat to the environment and human health?” Journal of Applied Biomedicine, vol. 6, pp. 117–119, 2008. View at Google Scholar
  9. L. Fu, Z. Liu, Y. Liu et al., “Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices,” Advanced Materials, vol. 17, no. 2, pp. 217–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken, “Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide,” Advanced Functional Materials, vol. 15, no. 10, pp. 1708–1715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal oxide nanoparticles as bactericidal agents,” Langmuir, vol. 18, no. 17, pp. 6679–6686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” Journal of Physical Chemistry B, vol. 104, no. 26, pp. 6095–6098, 2000. View at Google Scholar · View at Scopus
  13. A. Yadav, V. Prasad, A. A. Kathe et al., “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bulletin of Materials Science, vol. 29, no. 6, pp. 641–645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Parthasarathi and G. Thilagavathi, “Synthesis and characterization of titanium dioxide nano-particles and their applications to textiles for microbe resistance,” Journal of Textile and Apparel, Technology and Management, vol. 6, no. 2, 2009. View at Google Scholar · View at Scopus
  15. D. P. Chattopadhyay and B. H. Patel, “Improvement in physical and dyeing properties of natural fibres through pre-treatment with silver nanoparticles,” Indian Journal of Fibre and Textile Research, vol. 34, no. 4, pp. 368–373, 2009. View at Google Scholar · View at Scopus
  16. L. Haixia, D. Hua, and Z. Jing, “Performance research of polyester fabric treated by nano titanium dioxide (N ano-TiO2) anti-ultraviolet finishing,” International Journal of Chemistry, vol. 1, p. 57, 2009. View at Google Scholar
  17. S. Kathirvelu, L. D'Souza, and B. Dhurai, “UV protection finishing of textiles using ZnO nanoparticles,” Indian Journal of Fibre and Textile Research, vol. 34, no. 3, pp. 267–273, 2009. View at Google Scholar · View at Scopus
  18. M. Moroni, D. Borrini, L. Calamai, and L. Dei, “Ceramic nanomaterials from aqueous and 1,2-ethanediol supersaturated solutions at high temperature,” Journal of Colloid and Interface Science, vol. 286, no. 2, pp. 543–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. J. Kwon, K. H. Kim, C. S. Lim, and K. B. Shim, “Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route,” Journal of Ceramic Processing Research, vol. 3, no. 3, pp. 146–149, 2002. View at Google Scholar · View at Scopus
  20. R. Rajendran, C. Balakumar, M. A. Hasabo, S. Jayakumar, K. Vaideki, and E. M. Rajesh, “Use of zinc oxide nano particles for production of antimicrobial textiles,” International Journal of Engineering, Science and Technology, vol. 2, no. 1, pp. 202–208, 2010. View at Google Scholar
  21. L. Zhang, Y. Jiang, Y. Ding et al., Journal of Nanoparticle Research, vol. 10, pp. 9711–9711, 2009.
  22. O. Yamamoto, J. Sawai, and T. Sasamoto, “Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution,” International Journal of Inorganic Materials, vol. 2, no. 5, pp. 451–454, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Padmavathy and R. Vijayaraghavan, “Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study,” Science and Technology of Advanced Materials, vol. 9, no. 3, Article ID 035004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Q. Liu, O. Sakurai, N. Mizutani, and M. Kato, “Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques,” Journal of Materials Science, vol. 21, no. 10, pp. 3698–3702, 1986. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Trindade, J. D. Pedrosa De Jesus, and P. O'Brien, “Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution,” Journal of Materials Chemistry, vol. 4, no. 10, pp. 1611–1617, 1994. View at Google Scholar · View at Scopus
  26. M. A. Vergés and M. M. Gallego, “Spherical and rod-like zinc oxide microcrystals: morphological characterization and microstructural evolution with temperature,” Journal of Materials Science, vol. 27, no. 14, pp. 3756–3762, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Chen, X. Jiao, and G. Cheng, “Hydrothermal synthesis of zinc oxide powders with different morphologies,” Solid State Communications, vol. 113, no. 6, pp. 363–366, 2000. View at Google Scholar · View at Scopus
  28. S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” Journal of Applied Physics, vol. 85, no. 5, pp. 2861–2865, 1999. View at Google Scholar · View at Scopus
  29. A. S. M. Raja, G. Thilagavathi, and T. Kannaian, “Synthesis of spray dried polyvinyl pyrrolidone coated silver nanopowder and its application on wool and cotton for microbial resistance,” Indian Journal of Fibre and Textile Research, vol. 35, no. 1, pp. 59–64, 2010. View at Google Scholar · View at Scopus
  30. G. Thilagavathi, K. Rajendrakumar, and R. Rajendran, “Development of ecofriendly antimicrobial textile finishes using herbs,” Indian Journal of Fibre and Textile Research, vol. 30, no. 4, pp. 431–436, 2005. View at Google Scholar · View at Scopus
  31. S. Ghosh, S. Yadav, and N. Reynolds, “Antibacterial properties of cotton fabric treated with silver nanoparticles,” Journal of the Textile Institute, vol. 101, no. 10, pp. 917–924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Saito, “Antibacterial, deodorizing, and UV absorbing materials obtained with zinc oxide (ZnO) coated fabrics,” Journal of Coated Fabrics, vol. 23, pp. 150–164, 1993. View at Google Scholar · View at Scopus
  33. N. Gokarneshan, P. P. Gopalakrishnan, and B. Jeyanthi, “Influence of various nano finishes on the functional properties of textile materials,” International Journal of Basic and Applied Chemical Sciences, vol. 2, no. 2, pp. 8–24, 2012. View at Google Scholar
  34. M. Gorensek, M. Gorjanc, V. Bukosek, K. Janez, P. Jovancic, and M. Darka, “Functionalization of PET fabrics by corona and nano silver,” Textile Research Journal, vol. 80, no. 3, pp. 253–262, 2010. View at Publisher · View at Google Scholar
  35. ASTM Designation: E 2149-01 method, “Standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions”.
  36. C. C. Chen, C. C. Wang, and J. T. Yeh, “Improvement of odor elimination and anti-bacterial activity of polyester fabrics finished with composite emulsions of nanometer titanium dioxide-silver particles-water-borne polyurethane,” Textile Research Journal, vol. 80, no. 4, pp. 291–300, 2010. View at Publisher · View at Google Scholar · View at Scopus