Table of Contents
ISRN Dentistry
Volume 2012 (2012), Article ID 198351, 8 pages
http://dx.doi.org/10.5402/2012/198351
Research Article

Temperature Rise during Primer, Adhesive, and Composite Resin Photopolymerization of a Low-Shrinkage Composite Resin under Caries-Like Dentin Lesions

1Torabinejad Dental Research Center and Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
2Dental Materials Research Center and Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
3Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

Received 18 October 2012; Accepted 26 November 2012

Academic Editors: H. S. Cardash, G. V. Kulkarni, and M. Tanomaru-Filho

Copyright © 2012 Sayed-Mostafa Mousavinasab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Lloyd, A. Joshi, and E. McGlynn, “Temperature rises produced by light sources and composites during curing,” Dental Materials, vol. 2, no. 4, pp. 170–174, 1986. View at Google Scholar · View at Scopus
  2. S. Masutani, J. C. Setcos, R. J. Schnell, and R. W. Phillips, “Temperature rise during polymerization of visible light-activated composite resins,” Dental Materials, vol. 4, no. 4, pp. 174–178, 1988. View at Google Scholar · View at Scopus
  3. M. Hannig and B. Bott, “In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources,” Dental Materials, vol. 15, no. 4, pp. 275–281, 1999. View at Google Scholar · View at Scopus
  4. D. S. Cobb, D. N. Dederich, and T. V. Gardner, “In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser,” Lasers in Surgery and Medicine, vol. 26, no. 4, pp. 386–397, 2000. View at Publisher · View at Google Scholar
  5. A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, G. Pichler, and M. Ristić, “Degree of Conversion and temperature rise during polymerization of composite resin samples with blue diodes,” Journal of Oral Rehabilitation, vol. 28, no. 6, pp. 586–591, 2001. View at Google Scholar
  6. L. F. Schneider, S. Consani, L. Correr-Sobrinho, A. B. Correr, and M. A. Sinhoreti, “Halogen and LED light curing of composite: temperature increase and Knoop hardness,” Clinical Oral Investigations, vol. 10, no. 1, pp. 66–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Yazici, A. Müftü, G. Kugel, and R. D. Perry, “Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro,” Operative Dentistry, vol. 31, no. 2, pp. 261–265, 2006. View at Google Scholar · View at Scopus
  8. H. E. Goodis, J. M. White, J. Andrews, and L. G. Watanabe, “Measurement of temperature generated by visible-light-cure lamps in an in vitro model,” Dental Materials, vol. 5, no. 4, pp. 230–234, 1989. View at Google Scholar · View at Scopus
  9. D. F. Murchison and B. K. Moore, “Influence of curing time and distance on microhardness of eight light-cured liners,” Operative Dentistry, vol. 17, no. 4, pp. 135–141, 1992. View at Google Scholar · View at Scopus
  10. L. Zach and G. Cohen, “Pulp response to externally applied heat,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 19, no. 4, pp. 515–530, 1965. View at Google Scholar · View at Scopus
  11. P. Baldissara, S. Catapano, and R. Scotti, “Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study,” Journal of Oral Rehabilitation, vol. 24, no. 11, pp. 791–801, 1997. View at Google Scholar · View at Scopus
  12. D. A. Stewardson, A. C. C. Shortall, E. Harrington, and P. J. Lumley, “Thermal changes and cure depths associated with a high intensity light activation unit,” Journal of Dentistry, vol. 32, no. 8, pp. 643–651, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Al-Qudah, C. A. Mitchell, P. A. Biagioni, and D. L. Hussey, “Thermographic investigation of contemporary resin-containing dental materials,” Journal of Dentistry, vol. 33, no. 7, pp. 593–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. F. H. Loureiro, S. Consani, R. D. Guiraldo et al., “Comparison between two methods to evaluate temperature changes produced by composite light curing units and polymerization techniques,” Minerva Stomatologica, vol. 60, no. 10, pp. 501–508, 2011. View at Google Scholar
  15. R. W. Loney and R. B. Price, “Temperature transmission of high-output light-curing units through dentin,” Operative Dentistry, vol. 26, no. 5, pp. 516–520, 2001. View at Google Scholar · View at Scopus
  16. L. F. J. Schneider, S. Consani, M. A. C. Sinhoreti, L. Correr Sobrinho, and F. M. Milan, “Temperature change and hardness with different resin composites and photo-activation methods,” Operative Dentistry, vol. 30, no. 4, pp. 516–521, 2005. View at Google Scholar · View at Scopus
  17. D. H. Pashley, “Clinical correlations of dentin structure and function,” The Journal of Prosthetic Dentistry, vol. 66, no. 6, pp. 777–781, 1991. View at Google Scholar · View at Scopus
  18. M. Nakajima, M. Ogata, M. Okuda, J. Tagami, H. Sano, and D. H. Pashley, “Bonding to caries-affected dentin using self-etching primers,” American Journal of Dentistry, vol. 12, pp. 309–314, 1999. View at Google Scholar · View at Scopus
  19. M. Nakajima, H. Sano, M. F. Burrow et al., “Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives,” Journal of Dental Research, vol. 74, no. 10, pp. 1679–1688, 1995. View at Google Scholar · View at Scopus
  20. M. Nakajima, Y. Kitasako, M. Okuda, R. M. Foxton, and J. Tagami, “Elemental distributions and microtensile bond strength of the adhesive interface to normal and caries-affected dentin,” Journal of Biomedical Materials Research—Part B, vol. 72, no. 2, pp. 268–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. B. Fanbunda and A. De Sa, “Thermal conductivity of normal and abnormal human dentine,” Archives of Oral Biology, vol. 20, no. 7, pp. 457–459, 1975. View at Google Scholar · View at Scopus
  22. G. Tosun, A. Usumez, I. Yondem, and Y. Sener, “Temperature rise under normal and caries-affected primary tooth dentin disks during polymerization of adhesives and resin-containing dental materials,” Dental Materials Journal, vol. 27, no. 3, pp. 466–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. 3M-ESPE. Filtek Silorane Low Shrinkage Posterior Restorative, Silorane System Adhesive Self-Etch Primer and Bond 3M-ESPE, Seefeld, Germany, 2007.
  24. J. V. Crivello, B. Falk, and M. R. Zonca Jr., “Photoinduced cationic ring-opening frontal polymerizations of oxetanes and oxiranes,” Journal of Polymer Science, Part A, vol. 42, no. 7, pp. 1630–1646, 2004. View at Google Scholar · View at Scopus
  25. T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Review of Scientific Instruments, vol. 81, no. 12, Article ID 124903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Yang, G. Flaim, and S. H. Dickens, “Remineralization of human natural caries and artificial caries-like lesions with an experimental whisker-reinforced ART composite,” Acta Biomaterialia, vol. 7, no. 5, pp. 2303–2309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Pereira Da Silva, L. Alves Da Cunha, C. Pagani, and S. De Mello Rode, “Temperature rise during adhesive and composite polymerization with different light-curing sources,” Minerva Stomatologica, vol. 59, no. 5, pp. 253–258, 2010. View at Google Scholar · View at Scopus
  28. V. Miletic, V. Ivanovic, B. Dzeletovic, and M. Lezaja, “Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing,” Journal of Esthetic and Restorative Dentistry, vol. 21, no. 2, pp. 122–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Ozturk, A. N. Ozturk, A. Usumez, S. Usumez, and F. Özer, “Temperature rise during adhesive and resin composite polymerization with various light curing sources,” Operative Dentistry, vol. 29, no. 3, pp. 325–332, 2004. View at Google Scholar · View at Scopus
  30. J. Leprince, J. Devaux, T. Mullier, J. Vreven, and G. Leloup, “Pulpal-temperature rise and polymerization efficiency of LED curing lights,” Operative Dentistry, vol. 35, no. 2, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. B. Jakubinek, C. O'Neill, C. Felix, R. B. Price, and M. A. White, “Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations,” Dental Materials, vol. 24, no. 11, pp. 1468–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Atai and F. Motevasselian, “Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites,” Clinical Oral Investigations, vol. 13, no. 3, pp. 309–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Meredith, A. Watts, R. C. Patterson, and R. Strang, “Investigation of the temperature rise produced in the pulp chamber by operative procedures,” Journal of Dental Research, vol. 63, no. 4, article 511, 1984, abstract no. 193. View at Google Scholar
  34. C. H. Lloyd and E. A. Brown, “The heats of reaction and temperature rises associated with the setting of bonding resins,” Journal of Oral Rehabilitation, vol. 11, no. 4, pp. 319–324, 1984. View at Google Scholar · View at Scopus
  35. N. M. Taher, Y. Al-Khairallah, S. H. Al-Aujan, and M. Ad'dahash, “The effect of different light-curing methods on temperature changes of dual polymerizing agents cemented to human dentin,” Journal of Contemporary Dental Practice, vol. 9, no. 2, pp. 57–64, 2008. View at Google Scholar · View at Scopus
  36. A. Knezevic, K. Sariri, I. Sovic, N. Demoli, and Z. Tarle, “Shrinkage evaluation of composite polymerized with LED units using laser interferometry,” Quintessence International, vol. 41, no. 5, pp. 417–425, 2010. View at Google Scholar · View at Scopus
  37. A. Melara Munguía, M. Arregui Gambús, F. Guinot Jimeno, and L. J. Bellet Dalmau, “Temperature changes caused by light curing units on dentine of primary teeth,” European Journal of Paediatric Dentistry, vol. 12, no. 1, pp. 7–12, 2011. View at Google Scholar · View at Scopus
  38. E. M. da Silva, A. G. Penelas, M. S. Simão, J. D. N. Filho, L. T. Poskus, and J. G. A. Guimarães, “Influence of the degree of dentine mineralization on pulp chamber temperature increase during resin-based composite (RBC) light-activation,” Journal of Dentistry, vol. 38, no. 4, pp. 336–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. O. A. Adebayo, M. F. Burrow, M. J. Tyas, and J. Palamara, “Effect of tooth surface preparation on the bonding of self-etching primer adhesives,” Operative Dentistry, vol. 37, no. 2, pp. 137–149, 2012. View at Publisher · View at Google Scholar
  40. A. C. Shortall and E. Harrington, “Temperature rise during polymerization of light-activated resin composites,” Journal of Oral Rehabilitation, vol. 25, no. 12, pp. 908–913, 1998. View at Google Scholar · View at Scopus
  41. A. Uhl, R. W. Mills, A. E. Rzanny, and K. D. Jandt, “Time dependence of composite shrinkage using halogen and LED light curing,” Dental Materials, vol. 21, no. 3, pp. 278–286, 2005. View at Publisher · View at Google Scholar · View at Scopus