Table of Contents
ISRN Molecular Biology
Volume 2012 (2012), Article ID 205049, 6 pages
http://dx.doi.org/10.5402/2012/205049
Research Article

DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol

Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, Parangipettai 608 502, India

Received 31 August 2012; Accepted 18 October 2012

Academic Editors: A. Maucuer and B. L. Nielsen

Copyright © 2012 Sunil Kumar Sahu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Tan and B. C. Yiap, “DNA, RNA, and protein extraction: the past and the present,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 574398, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. S. Sangwan, R. S. Sangwan, and S. Kumar, “Isolation of genomic DNA from the antimalarial plant Artemisia annua,” Plant Molecular Biology Reporter, vol. 16, no. 4, pp. 1–9, 1998. View at Google Scholar
  3. D. G. Peterson, K. S. Boehm, and S. M. Stack, “Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), a plant containing high levels of polyphenolic compounds,” Plant Molecular Biology Reporter, vol. 15, no. 2, pp. 148–153, 1997. View at Google Scholar · View at Scopus
  4. S. Porebski, L. G. Bailey, and B. R. Baum, “Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components,” Plant Molecular Biology Reporter, vol. 15, no. 1, pp. 8–15, 1997. View at Google Scholar · View at Scopus
  5. Y. J. Cheng, W. W. U. Guo, Y. I. Hua-Lin, X. M. Pang, and X. Deng, “An efficient protocol for genomic DNA extraction from citrus species,” Plant Molecular Biology Reporter, vol. 21, no. 2, pp. 177–178, 2003. View at Google Scholar · View at Scopus
  6. A. Michiels, W. Van Den Ende, M. Tucker, L. Van Riet, and A. Van Laere, “Extraction of high-quality genomic DNA from latex-containing plants,” Analytical Biochemistry, vol. 315, no. 1, pp. 85–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Xu, X. Wen, and X. Deng, “A simple protocol for isolating genomic DNA from Chestnut Rose (Rosa roxburghii tratt) for RFLP and PCR analyses,” Plant Molecular Biology Reporter, vol. 22, no. 3, pp. 301–302, 2004. View at Google Scholar · View at Scopus
  8. K. Kathiresan, “Eco-biology of Mangroves,” in Mangroves: Ecology, Biology and Taxonomy, N. James and I. N. Metras, Eds., pp. 1–50, Nova Science, New York, NY, USA, 2011. View at Google Scholar
  9. K. Kathiresan and B. L. Bingham, “Biology of mangroves and mangrove ecosystems,” Advances in Marine Biology, vol. 40, pp. 81–251, 2001. View at Google Scholar · View at Scopus
  10. W. M. Bandaranayake, “Bioactivities, bioactive compounds and chemical constituents of mangrove plants,” Wetlands Ecology and Management, vol. 10, no. 6, pp. 421–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Weishing, H. Nybom, K. Wolff, and W. Meyer, “DNA isolation and purification,” in DNA Fingerprinting in Plants and Fungi, pp. 44–59, CRC Press, Boca Raton, Fla, USA, 1995. View at Google Scholar
  12. G. Fang, S. Hammar, and R. Grumet, “A quick and inexpensive method for removing polysaccharides from plant genomic DNA,” BioTechniques, vol. 13, no. 1, pp. 52–56, 1992. View at Google Scholar · View at Scopus
  13. R. N. Pandey, R. P. Adams, and L. E. Flournoy, “Inhibition of random amplified polymorphic DNAs (RAPDs) by plant polysaccharides,” Plant Molecular Biology Reporter, vol. 14, no. 1, pp. 17–22, 1996. View at Google Scholar · View at Scopus
  14. N. Do and R. P. Adams, “A simple technique for removing plant polysaccharide contaminants from DNA,” BioTechniques, vol. 10, no. 2, pp. 162–166, 1991. View at Google Scholar · View at Scopus
  15. F. R. Katterman and V. I. Shattuck, “An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins,” Preparative Biochemistry, vol. 13, no. 4, pp. 347–359, 1983. View at Google Scholar · View at Scopus
  16. Z. Xin and J. Chen, “DNA sequencing II: optimizing preparation and cleanup,” in Extraction of Genomic DNA from Plant Tissue, K. J. Sudbury, Ed., pp. 47–59, Jones and Bartlett, Boston, Mass, USA, 2006. View at Google Scholar
  17. E. Dilworth and J. E. Frey, “A rapid method for high throughput DNA extraction from plant material for PCR amplification,” Plant Molecular Biology Reporter, vol. 18, no. 1, pp. 61–64, 2000. View at Google Scholar · View at Scopus
  18. N. Ikeda, N. S. Bautista, T. Yamada, O. Kamijima, and T. Ishii, “Ultra-simple DNA extraction method for marker assisted selection using microsatellite markers in rice,” Plant Molecular Biology Reporter, vol. 19, no. 1, pp. 27–32, 2001. View at Google Scholar · View at Scopus
  19. J. J. Doyle and J. L. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, vol. 12, pp. 13–15, 1990. View at Google Scholar
  20. M. A. Saghai-Maroof, K. M. Soliman, R. A. Jorgensen, and R. W. Allard, “Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 24, pp. 8014–8018, 1984. View at Google Scholar · View at Scopus
  21. K. Wilson and J. Walker, Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press, 2005.
  22. M. Parani, M. Lakshmi, S. Elango, N. Ram, C. S. Anuratha, and A. Parida, “Molecular phylogeny of mangroves II. Intra-and inter-specific variation in Avicennia revealed by RAPD and RFLP markers,” Genome, vol. 40, no. 4, pp. 487–495, 1997. View at Google Scholar · View at Scopus
  23. S. Wicke and D. Quandt, “Universal primers for the amplification of the plastid trnK/matK region in land plants,” Anales del Jardin Botanico de Madrid, vol. 66, no. 2, pp. 285–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Moreira and D. A. Oliveira, “Leaf age affects the quality of DNA extracted from Dimorphandra mollis (Fabaceae), a tropical tree species from the Cerrado region of Brazil,” Genetics and Molecular Research, vol. 10, no. 1, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY, USA, 2001.
  26. P. S. K. Suman, K. S. Ajit, M. P. Darokar, and K. Sushil, “Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils,” Plant Molecular Biology Reporter, vol. 17, pp. 1–7, 1999. View at Google Scholar
  27. A. H. Paterson, C. L. Brubaker, and J. F. Wendel, “A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis,” Plant Molecular Biology Reporter, vol. 11, no. 2, pp. 122–127, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Clark, Plant Molecular Biology—A Laboratory Manual, Springer, Berlin, Germany, 1997.
  29. S. M. Aljanabi, L. Forget, and A. Dookun, “An improved and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA,” Plant Molecular Biology Reporter, vol. 17, pp. 1–8, 1999. View at Google Scholar
  30. J. A. Couch and P. J. Fritz, “Isolation of DNA from plants high in polyphenolics,” Plant Molecular Biology Reporter, vol. 8, no. 1, pp. 8–12, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Chaudhry, A. Yasmeen, T. Husnain, and S. Riazuddin, “Mini-scale genomic DNA extraction from cotton,” Plant Molecular Biology Reporter, vol. 17, pp. 1–7, 1999. View at Google Scholar
  32. J. Zhang and J. M. Stewart, “Economical and rapid method for extracting cotton genomic DNA,” Journal of Cotton Science, vol. 4, no. 3, pp. 193–201, 2000. View at Google Scholar · View at Scopus