Table of Contents
ISRN Hematology
Volume 2012 (2012), Article ID 212586, 12 pages
http://dx.doi.org/10.5402/2012/212586
Research Article

Cotransduction with MGMT and Ubiquitous or Erythroid-Specific GFP Lentiviruses Allows Enrichment of Dual-Positive Hematopoietic Progenitor Cells In Vivo

1Division of Infectious Diseases, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
2Division of Hematology Oncology, Case Comprehensive Cancer Center and The Center for Stem Cell and Regenerative Medicine, Cleveland, OH 44106, USA
3H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), 20132 Milan, Italy

Received 24 April 2012; Accepted 29 May 2012

Academic Editors: S. J. Brandt and H. Knecht

Copyright © 2012 Justin C. Roth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Corey, A. D. DeSilva, C. A. Holland, and D. A. Williams, “Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells,” Blood, vol. 75, no. 2, pp. 337–343, 1990. View at Google Scholar · View at Scopus
  2. J. A. Allay, D. A. Persons, J. Galipeau et al., “In vivo selection of retrovirally transduced hematopoietic stem cells,” Nature Medicine, vol. 4, no. 10, pp. 1136–1143, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Sorrentino, S. J. Brandt, D. Bodine et al., “Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1,” Science, vol. 257, no. 5066, pp. 99–103, 1992. View at Google Scholar · View at Scopus
  4. J. A. Allay, B. M. Davis, and S. L. Gerson, “Human alkyltransferase-transduced murine myeloid progenitors are enriched in vivo by BCNU treatment of transplanted mice,” Experimental Hematology, vol. 25, no. 10, pp. 1069–1076, 1997. View at Google Scholar · View at Scopus
  5. B. M. Davis, O. N. Koç, and S. L. Gerson, “Limiting numbers of G156A O6-methylguanine-DNA methyltransferase- transduced marrow progenitors repopulate nonmyeloablated mice after drug selection,” Blood, vol. 95, no. 10, pp. 3078–3084, 2000. View at Google Scholar · View at Scopus
  6. J. E. Bowman, J. S. Reese, K. T. Lingas, and S. L. Gerson, “Myeloablation is not required to select and maintain expression of the drug-resistance gene, mutant MGMT, in primary and secondary recipients,” Molecular Therapy, vol. 8, no. 1, pp. 42–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. T. M. Crone and A. E. Pegg, “A single amino acid change in human O6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by O6-benzylguanine,” Cancer Research, vol. 53, no. 20, pp. 4750–4753, 1993. View at Google Scholar · View at Scopus
  8. T. M. Crone, K. Goodtzova, S. Edara, and A. E. Pegg, “Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine,” Cancer Research, vol. 54, no. 23, pp. 6221–6227, 1994. View at Google Scholar · View at Scopus
  9. N. A. Loktionova and A. E. Pegg, “Point mutations in human O6-alkylguanine-DNA alkyltransferase prevent the sensitization by O6-benzylguanine to killing by N,N′-Bis(2-chloroethyl)-N-nitrosourea,” Cancer Research, vol. 56, no. 7, pp. 1578–1583, 1996. View at Google Scholar · View at Scopus
  10. B. M. Davis, J. C. Roth, L. Liu, M. Xu-Welliver, A. E. Pegg, and S. L. Gerson, “Characterization of the P140K, PVP(138–140)MLK, and G156A O6- methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy,” Human Gene Therapy, vol. 10, no. 17, pp. 2769–2778, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Reese, O. N. Koç, K. M. Lee et al., “Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14088–14093, 1996. View at Google Scholar · View at Scopus
  12. S. P. Zielske, J. S. Reese, K. T. Lingas, J. R. Donze, and S. L. Gerson, “In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1561–1570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Neff, P. A. Horn, L. J. Peterson et al., “Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1581–1588, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Sawai, S. Zhou, E. F. Vanin, P. Houghton, T. P. Brent, and B. P. Sorrentino, “Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector,” Molecular Therapy, vol. 3, no. 1, pp. 78–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Pollok, J. R. Hartwell, A. Braber et al., “In vivo selection of human hematopoietic cells in a xenograft model using combined pharmacologic and genetic manipulations,” Human Gene Therapy, vol. 14, no. 18, pp. 1703–1714, 2003. View at Google Scholar · View at Scopus
  16. D. A. Persons, E. R. Allay, N. Sawai et al., “Successful treatment of murine β-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells,” Blood, vol. 102, no. 2, pp. 506–513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Reiser, Z. Lai, X. Y. Zhang, and R. O. Brady, “Development of multigene and regulated lentivirus vectors,” Journal of Virology, vol. 74, no. 22, pp. 10589–10599, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene Therapy, vol. 7, no. 18, pp. 1562–1569, 2000. View at Google Scholar · View at Scopus
  19. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Hacein-Bey-Abina et al., “LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003. View at Google Scholar
  22. I. Visigalli, S. Delai, L. S. Politi et al., “Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model,” Blood, vol. 116, no. 24, pp. 5130–5139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. I. Pestina, P. W. Hargrove, D. Jay, J. T. Gray, K. M. Boyd, and D. A. Persons, “Correction of murine sickle cell disease using γ-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin,” Molecular Therapy, vol. 17, no. 2, pp. 245–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Richard, E. Robert, M. Cario-André et al., “Hematopoietic stem cell gene therapy of murine protoporphyria by methylguanine-DNA-methyltransferase-mediated in vivo drug selection,” Gene Therapy, vol. 11, no. 22, pp. 1638–1647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Halene, L. Wang, R. M. Cooper, D. C. Bockstoce, P. B. Robbins, and D. B. Kohn, “Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector,” Blood, vol. 94, no. 10, pp. 3349–3357, 1999. View at Google Scholar · View at Scopus
  26. M. Hildinger, B. Fehse, S. Hegewisch-Becker et al., “Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors,” Human Gene Therapy, vol. 9, no. 1, pp. 33–42, 1998. View at Google Scholar · View at Scopus
  27. M. Kumar, B. Keller, N. Makalou, and R. E. Sutton, “Systematic determination of the packaging limit of lentiviral vectors,” Human Gene Therapy, vol. 12, no. 15, pp. 1893–1905, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Lotti, E. Menguzzato, C. Rossi et al., “Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement,” Journal of Virology, vol. 76, no. 8, pp. 3996–4007, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. E. Kane, L. Matsumoto, M. Z. Metz et al., “MDR1 bicistronic vectors: analysis of selection stringency, amplified gene expression, and vector stability in cell lines,” Biochemical Pharmacology, vol. 62, no. 6, pp. 693–704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Leboulch, G. M. S. Huang, R. K. Humphries et al., “Mutagenesis of retroviral vectors transducing human β-globin gene and β-globin locus control region derivatives results in stable transmission of an active transcriptional structure,” EMBO Journal, vol. 13, no. 13, pp. 3065–3076, 1994. View at Google Scholar · View at Scopus
  31. R. Pawliuk, K. A. Westerman, M. E. Fabry et al., “Correction of sickle cell disease in transgenic mouse models by gene therapy,” Science, vol. 294, no. 5550, pp. 2368–2371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Reese, L. Liu, and S. L. Gerson, “Repopulating defect of mismatch repair-deficient hematopoietic stem cells,” Blood, vol. 102, no. 5, pp. 1626–1633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. M. Davis, J. S. Reese, O. N. Koç, K. Lee, J. E. Schupp, and S. L. Gerson, “Selection for G156A O6-methylguanine DNA methyltransferase gene- transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea,” Cancer Research, vol. 57, no. 22, pp. 5093–5099, 1997. View at Google Scholar · View at Scopus