Table of Contents
ISRN Microbiology
Volume 2012 (2012), Article ID 215716, 7 pages
http://dx.doi.org/10.5402/2012/215716
Research Article

Genetic Diversity of Colletotrichum spp. an Endophytic Fungi in a Medicinal Plant, Brazilian Pepper Tree

Department of Genetics, Centro Politécnico, Universidade Federal do Paraná (UFPR), Box 19071, 81531-990 Curitiba, PR, Brazil

Received 22 February 2012; Accepted 14 March 2012

Academic Editors: Y. C. Chang and T. Krishnan

Copyright © 2012 J. S. Lima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Azevedo, W. Maccheroni, J. O. Pereira, and W. L. de Araújo, “Endophytic microorganisms: a review on insect control and recent advances on tropical plants,” Electronic Journal of Biotechnology, vol. 3, no. 1, pp. 40–65, 2000. View at Google Scholar · View at Scopus
  2. Z. Huang, X. Cai, C. Shao et al., “Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76,” Phytochemistry, vol. 69, no. 7, pp. 1604–1608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. W. Zhang, Y. C. Song, and R. X. Tan, “Biology and chemistry of endophytes,” Natural Product Reports, vol. 23, no. 5, pp. 753–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Backman and R. A. Sikora, “Endophytes: an emerging tool for biological control,” Biological Control, vol. 46, no. 1, pp. 1–3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Bills, A. Dombrowsky, F. Pelaez, and J. Polishook, “Recent and future discoveries of pharmacologically active metabolites from tropical fungi,” in Tropical Mycology: Micromycetes, vol. 2, pp. 165–194, CABI, New York, NY, USA, 2002. View at Google Scholar
  6. L. Cai and C. D. Wu, “Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens,” Journal of Natural Products, vol. 59, no. 10, pp. 987–990, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Esposito and J. L. Azevedo, Fungos: Uma Introdução à Biologia, Bioquímica e Biotecnologia, EDUSC, Caxias do Sul, Brazil, 2004.
  8. K. F. Rodrigues, M. Hesse, and C. Werner, “Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin,” Journal of Basic Microbiology, vol. 40, pp. 261–267, 2000. View at Google Scholar
  9. D. G. S. Soares, C. B. de Oliveira, C. Leal et al., “Susceptibilidade in vitro de bactérias bucais a tinturas de fitoterápicos,” Revista Odonto Ciência, vol. 21, no. 53, pp. 232–238, 2006. View at Google Scholar
  10. G. Strobel, B. Daisy, U. Castillo, and J. Harper, “Natural products from endophytic microorganisms,” Journal of Natural Products, vol. 67, no. 2, pp. 257–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. V. Tejesvi, K. R. Kini, H. S. Prakash, V. Subbiah, and H. S. Shetty, “Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants,” Fungal Diversity, vol. 24, pp. 37–54, 2007. View at Google Scholar · View at Scopus
  12. E. Velázquez, H. A. Tournier, P. Mordujovich de Buschiazzo, G. Saavedra, and G. R. Schinella, “Antioxidant activity of Paraguayan plant extracts,” Fitoterapia, vol. 74, no. 1-2, pp. 91–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Yu, L. Zhang, L. Li et al., “Recent developments and future prospects of antimicrobial metabolites produced by endophytes,” Microbiological Research, vol. 165, no. 6, pp. 437–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Mytinger and G. B. Williamson, “The invasion of Schinus into saline communities of Everglades National Park,” Florida Scientist, vol. 50, pp. 7–12, 1987. View at Google Scholar
  15. C. H. Degáspari, N. Waszczynskyj, and M. R. M Pardo, “Atividade antimicrobiana de Schinus terebentifolius Raddi,” Ciência e Agrotecnologia, vol. 29, no. 3, pp. 617–622, 2005. View at Google Scholar
  16. M. J. M. Guerra, M. L. Barreiro, Z. M. Rodriguez, and Y. Rubalcaba, “Actividad antimicrobiana de um extracto fluido al 80% de Schinus terebenthifolius Raddi (copal),” Revista Cubana de Plantas Medicinales, vol. 5, no. 1, pp. 23–25, 2000. View at Google Scholar
  17. H. Lorenzi, Árvores Brasileiras—Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, vol. 1, Instituto Plantarum, 4th edition, 2002.
  18. M. O. Ribas, M. H. Sousa, J. Sartoretto et al., “Efeito da Schinus terebenthifolius Raddi sobre o processo de reparo tecidual das lesões ulceradas induzidas na mucosa bucal do rato,” Revista Odonto Ciência/PUCRS, vol. 21, no. 53, pp. 245–252, 2006. View at Google Scholar
  19. M. R. F. de Lima, J. de Souza Luna, A. F. Dos Santos et al., “Anti-bacterial activity of some Brazilian medicinal plants,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 137–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Hoffman, L. S. Coutinho, O. J. M. Torres et al., “Efeito do extrato hidroalcoólico da Aroeira (Schinus terebentifolius Raddi) na cicatrização de anastomoses colônicas. Estudo experimental em ratos,” Acta Cirurgica Brasileira, vol. 21, no. 3, pp. 49–54, 2006. View at Publisher · View at Google Scholar
  21. S. Johann, M. G. Pizzolatti, C. L. Donnici, and M. A. Resende, “Atividade antifúngica de plantas utilizadas na medicina tradicional brasileira contra fungos de relevância clínica,” Brazilian Journal of Microbiology, vol. 38, no. 4, pp. 632–637, 2007. View at Google Scholar
  22. J. A. T. Nunes Jr., J. M. Ribas-Filho, O. Malafaia et al., “Evaluation of the hydro-alcoholic Schinus terebinthifolius Raddi (Aroeira) extract in the healing process of the alba linea in rats,” Acta Cirurgica Brasileira, vol. 21, no. 3, pp. 8–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Sukumaran and M. T. Holder, “DendroPy: a Python library for phylogenetic computing,” Bioinformatics, vol. 26, no. 12, Article ID btq228, pp. 1569–1571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Talhinhas, S. Sreenivasaprasad, J. Neves-Martins, and H. Oliveira, “Genetic and morphological characterization of Colletotrichum acutatum causin anthracnose of luppins,” Phythopathology, vol. 92, pp. 986–996, 2002. View at Google Scholar
  25. R. Fenner, A. H. Betti, L. A. Mentz et al., “Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica,” Revista Brasileira de Ciências Farmacêuticas, vol. 42, no. 3, pp. 369–394, 2006. View at Google Scholar
  26. D. G. S. Soares, C. B. Oliveira, C. Leal et al., “Atividade Antibacteriana in vitro da Tintura de Aroeira (Schinus terebinthifolius) na Descontaminação de Escovas Dentais Contaminadas pelo S. mutans,” Pesquisa Brasileira em Odontopediatria e Clínica Integrada, vol. 7, no. 3, pp. 253–257, 2007. View at Google Scholar
  27. W. X. Zou, J. C. Meng, H. Lu et al., “Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica,” Journal of Natural Products, vol. 63, no. 11, pp. 1529–1530, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. L. C. S. Queires, F. Fauvel-Lafève, S. Terry et al., “Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius, Raddi) induce apoptotic and autophagic cell death of DU145 cells,” Anticancer Research, vol. 26, no. 1 A, pp. 379–387, 2006. View at Google Scholar · View at Scopus
  29. G. Lu, P. F. Cannon, A. Reid, and C. M. Simmons, “Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana,” Mycological Research, vol. 108, no. 1, pp. 53–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Moriwaki, T. Sato, and T. Tsukiboshi, “Morphological and molecular characterization of Colletotrichum boninense sp . nov. from Japan,” Mycoscience, vol. 44, no. 1, pp. 47–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. I. Rojas, S. A. Rehner, G. J. Samuels et al., “Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes,” Mycologia, vol. 102, no. 6, pp. 1318–1338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Afanador-Kafuri, D. Minz, M. Maymon, and S. Freeman, “Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus,” Phytopathology, vol. 93, no. 5, pp. 579–587, 2003. View at Google Scholar · View at Scopus
  33. S. Freeman, T. Katan, and E. Shabi, “Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits,” Plant Disease, vol. 82, no. 6, pp. 596–605, 1998. View at Google Scholar · View at Scopus
  34. I. P. Ahn and Y. H. Lee, “A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola,” Molecular Plant-Microbe Interactions, vol. 14, no. 4, pp. 496–507, 2001. View at Google Scholar · View at Scopus
  35. B. J. E. Schulz, “Mutualistic interactions with fungal root endophytes,” in Microbial Root Endophytes, B. J. E. Schulz, C. J. C. Boyle, and T. N. Sieber, Eds., pp. 261–280, Springer, Berlin, Germany, 2006. View at Google Scholar
  36. J. Sukumaran and M. T. Holder, “SumTrees: summarization of split support on phylogenetic trees,” Version 1.0.2. Part of the DendroPy Phylogenetic Computation Library Version 3.7.0, 2010, http://packages.python.org/DendroPy/.
  37. N. Herrero, S. Sánchez Márquez, and I. Zabalgogeazcoa, “Mycoviruses are common among different species of endophytic fungi of grasses,” Archives of Virology, vol. 154, no. 2, pp. 327–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. M. Marquez, R. S. Redman, R. J. Rodriguez, and M. J. Roossinck, “A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance,” Science, vol. 315, no. 5811, pp. 513–515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. R. Dalzoto, C. Glienke-Blanco, V. Kava-Cordeiro, J. Z. Ribeiro, E. W. Kitajima, and J. L. Azevedo, “Horizontal transfer and hypovirulence associated with double-stranded RNA in Beauveria bassiana,” Mycological Research, vol. 110, no. 12, pp. 1475–1481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999. View at Google Scholar
  41. M. J. Melzer and M. J. Bidochka, “Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence,” Mycologia, vol. 90, no. 4, pp. 586–594, 1998. View at Google Scholar · View at Scopus
  42. O. Petrini, “Taxonomy of endophytic fungi of aerial plant tissues,” in Microbiology of the Phyllosphere, N. J. Fokkema and J. van den Heuvel, Eds., pp. 175–187, Cambridge University Press, Cambridge, UK, 1986. View at Google Scholar
  43. U. Raeder and P. Broda, “Rapid preparation of DNA from filamentous fungi,” Letters in Applied Microbiology, vol. 1, no. 1, pp. 17–20, 1985. View at Google Scholar · View at Scopus
  44. C. Glienke-Blanco, C. I. Aguilar-Vildoso, M. L. Carneiro Vieira, P. A. V. Barroso, and J. L. Azevedo, “Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants,” Genetics and Molecular Biology, vol. 25, no. 2, pp. 251–255, 2002. View at Google Scholar · View at Scopus
  45. J. F. White Jr. and A. C. Morrow, “Endophyte-host associations in forage grasses. XII. A fungal endophyte of Trichachne insularis belonging to Psedocercosporella,” Mycologia, vol. 82, no. 2, pp. 218–226, 1990. View at Google Scholar
  46. P. R. Mills, S. Sreenivasaprasad, and A. E. Brown, “Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR,” FEMS Microbiology Letters, vol. 98, no. 1–3, pp. 137–143, 1992. View at Google Scholar · View at Scopus
  47. S. A. V. Pileggi, S. F. V. Oliveira, C. E. Waculicz-Andrade et al., “Molecular and Morphological Identification of Colletotrichum gloeosporioides and Colletotrichum boninense isolated from Maytenus ilicifolia,” Canadian Journal of Microbiology, vol. 55, pp. 1076–1088, 2009. View at Google Scholar
  48. G. S. de Hoog and A. H. G. Gerrits van den Ende, “Molecular diagnostics of clinical strains of filamentous Basidiomycetes,” Mycoses, vol. 41, no. 5-6, pp. 183–189, 1998. View at Google Scholar · View at Scopus
  49. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Google Scholar · View at Scopus
  50. D. Zwickl, Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, Ph.D. thesis, University of Texas at Austin, Austin, Tex, USA, 2006.
  51. J. P. Huelsenbeck and F. Ronquist, “MRBAYES: bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001. View at Google Scholar · View at Scopus
  52. G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist, “Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference,” Bioinformatics, vol. 20, no. 3, pp. 407–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Posada, “jModeltest: phylogenetic model averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Rambaut and A. J. Drummond, “Tracer v1.5,” 2009, http://beast.bio.ed.ac.uk/Tracer.
  55. J. A. A. Nylander, J. C. Wilgenbusch, D. L. Warren, and D. L. Swofford, “Awty (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics,” Bioinformatics, vol. 24, no. 4, pp. 581–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. P. W. Crous, J. C. Kang, C. L. Schoch, and G. R. A. Mchau, “Phylogenetic relationships of Cylindrocladium pseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and β-tubulin,” Canadian Journal of Botany, vol. 77, no. 12, pp. 1813–1820, 1999. View at Google Scholar · View at Scopus
  57. K. D. Hyde, L. CAI, P. F. Cannon et al., “Colletotrichum—names in current use,” Fungal Diversity, vol. 39, pp. 147–182, 2009. View at Google Scholar
  58. R. G. Shivas and Y. P. Tan, “A taxonomic reassessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov,” Fungal Diversity, vol. 39, pp. 111–122, 2009. View at Google Scholar
  59. M. Castro, K. Kramer, L. Valdivia, S. Ortiz, J. Benavente, and A. Castillo, “A new double-stranded RNA mycovirus from Botrytis cinerea,” FEMS Microbiology Letters, vol. 175, no. 1, pp. 95–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. R. L. J. Howitt, R. E. Beever, M. N. Pearson, and R. L. S. Forster, “Presence of double-stranded RNA and virus-like particles in Botrytis cinerea,” Mycological Research, vol. 99, no. 12, pp. 1472–1478, 1995. View at Google Scholar · View at Scopus
  61. T. Papp, I. Nyilasi, C. Fekete, L. Ferenczy, and C. Vagvolgyi, “Presence of double-stranded RNA and virus-like particles in Rhizopus isolates,” Canadian Journal of Microbiology, vol. 47, no. 5, pp. 443–447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. O. Preisig, N. Moleleki, W. A. Smit, B. D. Wingfield, and M. J. Wingfield, “A noval RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua,” Journal of General Virology, vol. 81, no. 12, pp. 3107–3114, 2000. View at Google Scholar · View at Scopus
  63. H. L. Robinson and J. W. Deacon, “Double-stranded RNA elements in Rhizoctonia solani AG3,” Mycological Research, vol. 106, no. 1, pp. 12–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. K. Punja, “Influence of double-stranded RNAs on growth, sporulation, pathogenicity, and survival of Chalara elegans,” Canadian Journal of Botany, vol. 73, no. 7, pp. 1001–1009, 1995. View at Google Scholar · View at Scopus
  65. A. L. Dawe and D. L. Nuss, “Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis,” Annual Review of Genetics, vol. 35, pp. 1–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Hollings, “Mycoviruses and plant pathology,” Plant Disease, vol. 66, pp. 1106–1112, 1982. View at Google Scholar
  67. M. N. Pearson, R. E. Beever, B. Boine, and K. Arthur, “Mycoviruses of filamentous fungi and their relevance to plant pathology,” Molecular Plant Pathology, vol. 10, no. 1, pp. 115–128, 2009. View at Publisher · View at Google Scholar · View at Scopus