Table of Contents
ISRN Mechanical Engineering
Volume 2012 (2012), Article ID 230314, 9 pages
http://dx.doi.org/10.5402/2012/230314
Research Article

A More Reliable Method for Monitoring the Condition of Three-Phase Induction Motors Based on Their Vibrations

Advanced Industrial Diagnostic Centre, School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK

Received 15 June 2012; Accepted 4 September 2012

Academic Editors: C. Del Vecchio and A. E. Huespe

Copyright © 2012 R. Shnibha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Siddique, G. S. Yadava, and B. Singh, “A review of stator fault monitoring techniques of induction motors,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp. 106–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. G. Dorrell, W. T. Thomson, and S. Roach, “Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 24–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Seker, “Determination of air-gap eccentricity in electric motors using coherence analysis,” IEEE Power Engineering Review, vol. 20, no. 7, pp. 48–50, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. W. R. Finley, “An analytical approach to solving motor vibration problems,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1467–1480, 2000. View at Google Scholar · View at Scopus
  5. N. Arthur and J. Penman, “Induction machine condition monitoring with higher order spectra,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1031–1041, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Liang, A. Ball, and S. Iwnicki, “Asymmetrical stator and rotor fault detection using vibration, per-phase current and transient speed analysis,” in Condition Monitoring and Diagnostic Management, chapter 38, p. 329, Elsevier, 2001. View at Google Scholar
  7. K. Darowicki and A. Zieliński, “Joint time-frequency analysis of electrochemical noise,” Journal of Electroanalytical Chemistry, vol. 504, no. 2, pp. 201–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Jurado and J. R. Saenz, “Comparison between discrete STFT and wavelets for the analysis of power quality events,” Electric Power Systems Research, vol. 62, no. 3, pp. 183–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Arabaci and O. Bilgin, “Neural network classification and diagnosis of broken rotor bar faults by means of short time Fourier transform,” in Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS'09), vol. 1, Hong Kong, 2009.
  10. A. Parey, M. El Badaoui, F. Guillet, and N. Tandon, “Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect,” Journal of Sound and Vibration, vol. 294, no. 3, pp. 547–561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Vecer, M. Kreidl, and R. Smid, “Condition indicators for gearbox condition monitoring systems,” Acta Polytechnica, vol. 45, no. 6, pp. 35–43, 2005. View at Google Scholar
  12. R. Shnibha, A. Albarbar, G. R. Ibrahim, and A. Badri, “Three phase induction motors: phase imbalance severity evaluation based on acoustic measurements and energy calculations,” in Proceedings of the Libyan Arab International Conference on Electrical and Electronic Engineering (LAICEEE'10), pp. 32–37, Tripoli, Libya.
  13. I. Ahmed, M. Ahmed, K. Imran, M. S. Kha, T. Akram, and M. Jawad, “Spectral analysis of misalignment in machines using sideband components of broken rotor bar, shorted turns and eccentricity,” International Journal of Electrical & Computer Sciences, vol. 10, no. 06, pp. 85–93, 2010. View at Google Scholar