Table of Contents
ISRN Molecular Biology
Volume 2012 (2012), Article ID 245706, 5 pages
http://dx.doi.org/10.5402/2012/245706
Review Article

Nucleosome Positioning

Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan

Received 19 August 2012; Accepted 17 September 2012

Academic Editors: Y.-K. Jang and A. J. Molenaar

Copyright © 2012 Hiromi Nishida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Kornberg, “Structure of chromatin,” Annual Review of Biochemistry, vol. 46, pp. 931–954, 1977. View at Google Scholar · View at Scopus
  2. T. Igo-Kemenes, W. Hörz, and H. G. Zachau, “Chromatin,” Annual Review of Biochemistry, vol. 51, pp. 89–121, 1982. View at Google Scholar · View at Scopus
  3. K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, “Crystal structure of the nucleosome core particle at 2.8 Å resolution,” Nature, vol. 389, no. 6648, pp. 251–260, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. T. J. Richmond and C. A. Davey, “The structure of DNA in the nucleosome core,” Nature, vol. 423, no. 6936, pp. 145–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Rice and C. D. Allis, “Histone methylation versus histone acetylation: new insights into epigenetic regulation,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 263–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Han and M. Grunstein, “Nucleosome loss activates yeast downstream promoters in vivo,” Cell, vol. 55, no. 6, pp. 1137–1145, 1988. View at Google Scholar · View at Scopus
  9. M. Grunstein, “Histone function in transcription,” Annual Review of Cell Biology, vol. 6, pp. 643–678, 1990. View at Google Scholar · View at Scopus
  10. Q. Lu, L. L. Wallrath, and S. C. R. Elgin, “Nucleosome positioning and gene regulation,” Journal of Cellular Biochemistry, vol. 55, no. 1, pp. 83–92, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. P. D. Gregory and W. Hörz, “Life with nucleosomes: chromatin remodelling in gene regulation,” Current Opinion in Cell Biology, vol. 10, no. 3, pp. 339–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Wyrick, F. C. P. Holstege, E. G. Jennings et al., “Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast,” Nature, vol. 402, no. 6760, pp. 418–421, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. O. J. Rando and K. Ahmad, “Rules and regulation in the primary structure of chromatin,” Current Opinion in Cell Biology, vol. 19, no. 3, pp. 250–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Tirosh and N. Barkai, “Two strategies for gene regulation by promoter nucleosomes,” Genome Research, vol. 18, no. 7, pp. 1084–1091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Field, Y. Fondufe-Mittendorf, I. K. Moore et al., “Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization,” Nature Genetics, vol. 41, no. 4, pp. 438–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Jiang and B. F. Pugh, “Nucleosome positioning and gene regulation: advances through genomics,” Nature Reviews Genetics, vol. 10, no. 3, pp. 161–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bai and A. V. Morozov, “Gene regulation by nucleosome positioning,” Trends in Genetics, vol. 26, no. 11, pp. 476–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kryukov, K. Sumiyama, K. Ikeo, T. Gojobori, and N. Saitou, “A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses,” Genome Biology and Evolution, vol. 4, no. 4, pp. 501–512, 2012. View at Publisher · View at Google Scholar
  19. G.-C. Yuan, Y.-J. Liu, M. F. Dion et al., “Molecular biology: genome-scale identification of nucleosome positions in S. cerevisiae,” Science, vol. 309, no. 5734, pp. 626–630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Valouev, J. Ichikawa, T. Tonthat et al., “A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning,” Genome Research, vol. 18, no. 7, pp. 1051–1063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. N. Mavrich, C. Jiang, I. P. Ioshikhes et al., “Nucleosome organization in the Drosophila genome,” Nature, vol. 453, no. 7193, pp. 358–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. E. Schones, K. Cui, S. Cuddapah et al., “Dynamic regulation of nucleosome positioning in the human genome,” Cell, vol. 132, no. 5, pp. 887–898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Westenberger, L. Cui, N. Dharia, E. Winzeler, and L. Cui, “Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes,” BMC Genomics, vol. 10, article 610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Nishida, T. Motoyama, S. Yamamoto, H. Aburatani, and H. Osada, “Genome-wide maps of mono- and di-nucleosomes of Aspergillus fumigatus,” Bioinformatics, vol. 25, no. 18, pp. 2295–2297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. B. Lantermann, T. Straub, A. Strålfors, G.-C. Yuan, K. Ekwall, and P. Korber, “Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae,” Nature Structural and Molecular Biology, vol. 17, no. 2, pp. 251–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. K. Chodavarapu, S. Feng, Y. V. Bernatavichute et al., “Relationship between nucleosome positioning and DNA methylation,” Nature, vol. 466, no. 7304, pp. 388–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Tsankov, D. A. Thompson, A. Socha, A. Regev, and O. J. Rando, “The role of nucleosome positioning in the evolution of gene regulation,” PLoS Biology, vol. 8, no. 7, Article ID e1000414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Li, J. Schug, G. Tuteja, P. White, and K. H. Kaestner, “The nucleosome map of the mammalian liver,” Nature Structural and Molecular Biology, vol. 18, no. 6, pp. 742–746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Nishida, S. Kondo, T. Matsumoto et al., “Characteristics of nucleosomes and linker DNA regions on the genome of the basidiomycete Mixia osmundae revealed by mono- and dinucleosome mapping,” Open Biology, vol. 2, Article ID 120043, 2012. View at Google Scholar
  30. G. S. Chang, A. A. Noegel, T. N. Mavrich et al., “Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium,” Genome Research, vol. 22, no. 6, pp. 1098–1106, 2012. View at Publisher · View at Google Scholar
  31. H. R. Drew and A. A. Travers, “DNA bending and its relation to nucleosome positioning,” Journal of Molecular Biology, vol. 186, no. 4, pp. 773–790, 1985. View at Google Scholar · View at Scopus
  32. S. C. Satchwell, H. R. Drew, and A. A. Travers, “Sequence periodicities in chicken nucleosome core DNA,” Journal of Molecular Biology, vol. 191, no. 4, pp. 659–675, 1986. View at Google Scholar · View at Scopus
  33. P. T. Lowary and J. Widom, “New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning,” Journal of Molecular Biology, vol. 276, no. 1, pp. 19–42, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Segal, Y. Fondufe-Mittendorf, L. Chen et al., “A genomic code for nucleosome positioning,” Nature, vol. 442, no. 7104, pp. 772–778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. E. Peckham, R. E. Thurman, Y. Fu et al., “Nucleosome positioning signals in genomic DNA,” Genome Research, vol. 17, no. 8, pp. 1170–1177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Kaplan, T. R. Hughes, J. D. Lieb, J. Widom, and E. Segal, “Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology,” Genome Biology, vol. 11, no. 11, article 140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Ioshikhes, S. Hosid, and B. F. Pugh, “Variety of genomic DNA patterns for nucleosome positioning,” Genome Research, vol. 21, no. 11, pp. 1863–11871, 2011. View at Publisher · View at Google Scholar
  38. A. Tsankov, Y. Yanagisawa, N. Rhind, A. Regev, and O. J. Rando, “Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization,” Genome Research, vol. 21, no. 11, pp. 1851–1862, 2011. View at Publisher · View at Google Scholar
  39. A. Valouev, S. M. Johnson, S. D. Boyd, C. L. Smith, A. Z. Fire, and A. Sidow, “Determinants of nucleosome organization in primary human cells,” Nature, vol. 474, no. 7352, pp. 516–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Stein, T. E. Takasuka, and C. K. Collings, “Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?” Nucleic Acids Research, vol. 38, no. 3, pp. 709–719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Zhang, Z. Moqtaderi, B. P. Rattner et al., “Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo,” Nature Structural and Molecular Biology, vol. 16, no. 8, pp. 847–852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Kaplan, I. Moore, Y. Fondufe-Mittendorf et al., “Nucleosome sequence preferences influence in vivo nucleosome organization,” Nature Structural and Molecular Biology, vol. 17, no. 8, pp. 918–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. B. F. Pugh, “A preoccupied position on nucleosomes,” Nature Structural and Molecular Biology, vol. 17, no. 8, p. 923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Johnson, F. J. Tan, H. L. McCullough, D. P. Riordan, and A. Z. Fire, “Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin,” Genome Research, vol. 16, no. 12, pp. 1505–1516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Lee, D. Tillo, N. Bray et al., “A high-resolution atlas of nucleosome occupancy in yeast,” Nature Genetics, vol. 39, no. 10, pp. 1235–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Tillo and T. R. Hughes, “G+C content dominates intrinsic nucleosome occupancy,” BMC Bioinformatics, vol. 10, article 442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Rimsky and A. Travers, “Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins,” Current Opinion in Microbiology, vol. 14, no. 2, pp. 136–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Takeda, C.-S. Yun, M. Shintani, H. Yamane, and H. Nojiri, “Distribution of genes encoding nucleoid-associated protein homologs in plasmids,” International Journal of Evolutionary Biology, vol. 2011, Article ID 685015, 2011. View at Google Scholar
  49. S. S. Ali, B. Xia, J. Liu, and W. W. Nararre, “Silencing of foreign DNA in bacteria,” Current Opinion in Microbiology, vol. 15, no. 2, pp. 175–181, 2012. View at Google Scholar
  50. H. Nishida, “Genome DNA sequence variation, evolution, and function in bacteria and archaea,” Current Issues in Molecular Biology, vol. 15, no. 1, pp. 19–24, 2013. View at Google Scholar
  51. B. E. Bernstein, C. L. Liu, E. L. Humphrey, E. O. Perlstein, and S. L. Schreiber, “Global nucleosome occupancy in yeast,” Genome Biology, vol. 5, no. 9, Article ID R62, 2004. View at Google Scholar · View at Scopus
  52. C.-K. Lee, Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb, “Evidence for nucleosome depletion at active regulatory regions genome-wide,” Nature Genetics, vol. 36, no. 8, pp. 900–905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Nishida, T. Suzuki, S. Kondo, H. Miura, Y. I. Fujimura, and Y. Hayashizaki, “Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell,” Chromosome Research, vol. 14, no. 2, pp. 203–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. T. N. Mavrich, I. P. Ioshikhes, B. J. Venters et al., “A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome,” Genome Research, vol. 18, no. 7, pp. 1073–1083, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Shivaswamy, A. Bhinge, Y. Zhao, S. Jones, M. Hirst, and V. R. Iyer, “Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation,” PLoS Biology, vol. 6, no. 3, Article ID e65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Nishida, T. Motoyama, Y. Suzuki, S. Yamamoto, H. Aburatani, and H. Osada, “Genome-wide maps of mononucleosomes and dinucleosomes containing hyperacetylated histones of Aspergillus fumigatus,” PloS ONE, vol. 5, no. 3, Article ID e9916, 2010. View at Google Scholar · View at Scopus
  57. H. Nishida, “Conservation of nucleosome positions in duplicated and orthologous gene pairs,” The Scientific World Journal, vol. 2012, Article ID 298174, 2012. View at Google Scholar
  58. A. Hughes and O. J. Rando, “Chromatin “programming” by sequence-is there more to the nucleosome code than %GC?” Journal of Biology, vol. 8, no. 11, article 96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Gkikopoulos, P. Schofield, V. Singh et al., “A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization,” Science, vol. 333, no. 6050, pp. 1758–1760, 2011. View at Publisher · View at Google Scholar
  60. Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber, and B. F. Pugh, “A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome,” Science, vol. 332, no. 6032, pp. 977–980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Tirosh, N. Sigal, and N. Barkai, “Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences,” Molecular Systems Biology, vol. 6, article 365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Tsui, S. Dubuis, M. Gebbia et al., “Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns,” Molecular and Cellular Biology, vol. 31, no. 21, pp. 4348–4355, 2011. View at Publisher · View at Google Scholar
  63. Y. Field, N. Kaplan, Y. Fondufe-Mittendorf et al., “Distinct modes of regulation by chromatin encoded through nucleosome positioning signals,” PLoS Computational Biology, vol. 4, no. 11, Article ID e1000216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Kaplan, I. K. Moore, Y. Fondufe-Mittendorf et al., “The DNA-encoded nucleosome organization of a eukaryotic genome,” Nature, vol. 458, no. 7236, pp. 362–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Yen, V. Vinayachandran, K. Batta, R. T. Koerber, and B. F. Pugh, “Genome-wide nucleosome specificity and directionality of chromatin remodelers,” Cell, vol. 149, no. 7, pp. 1461–1473, 2012. View at Publisher · View at Google Scholar
  66. J. S. Beckmann and E. N. Trifonov, “Splice junctions follow a 205-base ladder,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2380–2383, 1991. View at Google Scholar · View at Scopus
  67. P. Baldi, S. Brunak, Y. Chauvin, and A. Krogh, “Naturally occurring nucleosome positioning signals in human exons and introns,” Journal of Molecular Biology, vol. 263, no. 4, pp. 503–510, 1996. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Andersson, S. Enroth, A. Rada-Iglesias, C. Wadelius, and J. Komorowski, “Nucleosomes are well positioned in exons and carry characteristic histone modifications,” Genome Research, vol. 19, no. 10, pp. 1732–1741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Schwartz, E. Meshorer, and G. Ast, “Chromatin organization marks exon-intron structure,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 990–995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Tilgner, C. Nikolaou, S. Althammer et al., “Nucleosome positioning as a determinant of exon recognition,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 996–1001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Chen, L. Luo, and L. Zhang, “The organization of nucleosomes around splice sites,” Nucleic Acids Research, vol. 38, no. 9, pp. 2788–2798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Schwartz and G. Ast, “Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing,” EMBO Journal, vol. 29, no. 10, pp. 1629–1636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Kogan and E. N. Trifonov, “Gene splice sites correlate with nucleosome positions,” Gene, vol. 352, no. 1-2, pp. 57–62, 2005. View at Publisher · View at Google Scholar · View at Scopus