Table of Contents
ISRN Veterinary Science
Volume 2012, Article ID 254739, 24 pages
http://dx.doi.org/10.5402/2012/254739
Review Article

Detection and Control of Prion Diseases in Food Animals

1Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
2Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
3School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3

Received 30 November 2011; Accepted 22 December 2011

Academic Editors: R. Harasawa and R. Thanawongnuwech

Copyright © 2012 Peter Hedlin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Sigurdsson, “Rida, a chronic encephalitis of sheep: with general remarks on infections which develop slowly and some of their special characteristics,” British Veterinary Journal, vol. 110, pp. 341–354, 1954. View at Google Scholar
  2. I. Klatzo, D. C. Gajdusek, and V. Zigas, “Pathology of kuru,” Laboratory Investigation, vol. 8, no. 4, pp. 799–847, 1959. View at Google Scholar
  3. D. C. Gajdusek, C. J. Gibbs, and M. Alpers, “Experimental transmission of a kuru-like syndrome to chimpanzees,” Nature, vol. 209, no. 5025, pp. 794–796, 1966. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Gibbs Jr., D. C. Gajdusek, D. M. Asher et al., “Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee,” Science, vol. 161, no. 3839, pp. 388–389, 1968. View at Google Scholar · View at Scopus
  5. H. B. Parry, “Scrapie: a transmissible hereditary disease of sheep,” Heredity, vol. 17, pp. 75–105, 1962. View at Google Scholar
  6. E. Beghi, C. Gandolfo, C. Ferrarese et al., “Bovine spongiform encephalopathy and Creutzfeldt-Jakob disease: facts and uncertainties underlying the causal link between animal and human diseases,” Neurological Sciences, vol. 25, no. 3, pp. 122–129, 2004. View at Google Scholar · View at Scopus
  7. C. J. Sigurdson and A. Aguzzi, “Chronic wasting disease,” Biochimica et Biophysica Acta, vol. 1772, no. 6, pp. 610–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. S. Williams and S. Young, “Neuropathology of chronic wasting disease of mule deer (Odocoileus hemionus) and elk (Cervus elaphus nelsoni),” Veterinary Pathology, vol. 30, no. 1, pp. 36–45, 1993. View at Google Scholar · View at Scopus
  9. K. Schneider, H. Fangerau, B. Michaelsen, and W. H. Raab, “The early history of the transmissible spongiform encephalopathies exemplified by scrapie,” Brain Research Bulletin, vol. 77, no. 6, pp. 343–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Comber, Real Improvements in Agriculture, Nicoll, W., London, UK, 1st edition, 1772.
  11. G. Turner, “Extracts from a "general" view of the agriculture of the country of Gloucester; with observations on the means of its improvements; drawn up for the consideration of the board of agriculture,” The Royal Bath and West of England Society, vol. 7, 1795. View at Google Scholar
  12. P. Cuille and L. Chelle, “Pathologie animale—la malade dite tremblante du mouton est-elle inocuable?” Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, vol. 203, pp. 1552–1554, 1936. View at Google Scholar
  13. P. Cuille and L. Chelle, “Le tremblante du mouton est-elle determinee par un virus filtrable?” Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, vol. 203, pp. 1687–1688, 1938. View at Google Scholar
  14. F. Houston, W. Goldmann, A. Chong et al., “Prion diseases: BSE in sheep bred for resistance to infection,” Nature, vol. 423, no. 6939, p. 498, 2003. View at Publisher · View at Google Scholar
  15. W. Goldmann, N. Hunter, G. Smith, J. Foster, and J. Hope, “PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie,” Journal of General Virology, vol. 75, no. 5, pp. 989–995, 1994. View at Google Scholar · View at Scopus
  16. L. J. van Keulen, B. E. Schreuder, R. H. Meloen, G. Mooij-Harkes, M. E. Vromans, and J. P. M. Langeveld, “Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie,” Journal of Clinical Microbiology, vol. 34, no. 5, pp. 1228–1231, 1996. View at Google Scholar · View at Scopus
  17. T. Ikeda, M. Horiuchi, N. Ishiguro, Y. Muramatsu, G. D. Kai-Uwe, and M. Shinagawa, “Amino acid polymorphisms of PrP with reference to onset of scrapie in Suffolk and Corriedale sheep in Japan,” Journal of General Virology, vol. 76, no. 10, pp. 2577–2581, 1995. View at Google Scholar · View at Scopus
  18. R. R. Kao, M. B. Gravenor, M. Baylis et al., “The potential size and duration of an epidemic of bovine spongiform encephalopathy in British sheep,” Science, vol. 295, no. 5553, pp. 332–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Baylis and K. M. McIntyre, “Transmissible spongiform encephalopathies: scrapie control under new strain,” Nature, vol. 432, no. 7019, pp. 810–811, 2004. View at Google Scholar
  20. E. S. Williams, “Chronic wasting disease,” Veterinary Pathology, vol. 42, no. 5, pp. 530–549, 2005. View at Google Scholar
  21. E. S. Williams and S. Young, “Chronic wasting disease of captive mule deer: a spongiform encephalopathy,” Journal of Wildlife Diseases, vol. 16, no. 1, pp. 89–98, 1980. View at Google Scholar · View at Scopus
  22. S. R. Browning, G. L. Mason, T. Seward et al., “Transmission of prions from mule deer and elk with chronic wasting disease to transgenic mice expressing cervid PrP,” Journal of Virology, vol. 78, no. 23, pp. 13345–13350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. W. Miller, E. S. Williams, C. W. McCarty et al., “Epizootiology of chronic wasting disease in free-ranging cervids in Colorado and Wyoming,” Journal of Wildlife Diseases, vol. 36, no. 4, pp. 676–690, 2000. View at Google Scholar · View at Scopus
  24. E. D. Belay, R. A. Maddox, E. S. Williams, M. W. Miller, P. Gambetti, and L. B. Schonberger, “Chronic wasting disease and potential transmission to humans,” Emerging Infectious Diseases, vol. 10, no. 6, pp. 977–984, 2004. View at Google Scholar · View at Scopus
  25. G. A. Wells, A. C. Scott, C. T. Johnson et al., “A novel progressive spongiform encephalopathy in cattle,” Veterinary Record, vol. 121, no. 18, pp. 419–420, 1987. View at Google Scholar · View at Scopus
  26. C. A. Donnelly, N. M. Ferguson, A. C. Ghani, and R. M. Anderson, “Implications of BSE infection screening data for the scale of the British BSE epidemic and current European infection levels,” Proceedings of the Royal Society B: Biological Sciences, vol. 269, no. 1506, pp. 2179–2190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Wilesmith, G. A. Wells, M. P. Cranwell, and J. P. Ryan, “Bovine spongiform encephalopathy: epidemiological studies,” Veterinary Record, vol. 123, no. 25, pp. 638–644, 1988. View at Google Scholar · View at Scopus
  28. T. Baron and A. G. Biacabe, “Origin of bovine spongiform encephalopathy,” Lancet, vol. 367, no. 9507, pp. 297–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Konold, Y. H. Lee, M. J. Stack et al., “Different prion disease phenotypes result from inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain,” BMC Veterinary Research, vol. 2, article 31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Editorial-team, “Fourth case of transfusion-associated vCJD infection in the United Kingdom,” Eurosurveillance, vol. 12, no. 1, pp. E070118–E070124, 2007. View at Google Scholar
  31. R. Cappai and S. J. Collins, “Structural biology of prions,” Contributions to Microbiology, vol. 11, pp. 14–32, 2004. View at Google Scholar · View at Scopus
  32. A. G. Biacabe, E. Morignat, J. Vulin, D. Calavas, and T. G. Baron, “Atypical bovine spongiform encephalopathies, France, 2001-2007,” Emerging Infectious Diseases, vol. 14, no. 2, pp. 298–300, 2008. View at Google Scholar · View at Scopus
  33. L. A. Detwiler, “Scrapie,” Revue Scientifique et Technique: Office International des Epizooties, vol. 11, no. 2, pp. 491–537, 1992. View at Google Scholar · View at Scopus
  34. N. Hunter, “Scrapie and experiomental BSE in sheep,” British Medical Bulletin, vol. 66, pp. 171–183, 2006. View at Google Scholar
  35. E. F. Houston and M. B. Gravenor, “Clinical signs in sheep experimentally infected with scrapie and BSE,” Veterinary Record, vol. 152, no. 11, pp. 334–336, 2003. View at Google Scholar · View at Scopus
  36. L. Petrie, B. Heath, and D. Harold, “Scrapie: report of an outbreak and brief review,” Canadian Veterinary Journal, vol. 30, pp. 321–327, 1989. View at Google Scholar
  37. J. J. Greenlee, J. D. Smith, and R. A. Kunkle, “White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation,” Veterinary Research, vol. 42, no. 1, p. 107, 2011. View at Google Scholar
  38. A. N. Hamir, J. M. Miller, R. C. Cutlip et al., “Transmission of sheep scrapie to elk (Cervus elaphus nelsoni) by intracerebral inoculation: final outcome of the experiment,” Journal of Veterinary Diagnostic Investigation, vol. 16, no. 4, pp. 316–321, 2004. View at Google Scholar
  39. R. Bradley, “Bovine spongiform encephalopathy epidemiology—a brief review,” Livestock Production Science, vol. 38, no. 1, pp. 5–16, 1994. View at Google Scholar · View at Scopus
  40. A. Gurgul and E. Słota, “Effect of bovine PRNP gene polymorphisms on BSE susceptibility in cattle,” Folia Biologica, vol. 55, no. 3-4, pp. 81–86, 2007. View at Google Scholar
  41. J. A. Richt and S. M. Hall, “BSE case associated with prion protein gene mutation,” PLoS Pathogens, vol. 4, no. 9, Article ID e1000156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Harman and C. J. Silva, “Bovine spongiform encephalopathy,” Journal of the American Veterinary Medical Association, vol. 234, no. 1, pp. 59–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Novakofski, M. S. Brewer, N. Mateus-Pinilla, J. Killefer, and R. H. McCusker, “Prion biology relevant to bovine spongiform encephalopathy,” Journal of Animal Science, vol. 83, no. 6, pp. 1455–1476, 2005. View at Google Scholar · View at Scopus
  44. M. R. Perrott, C. J. Sigurdson, G. L. Mason, and E. A. Hoover, “Evidence for distinct CWD strains in experimental CWD in ferrets,” General Virology, vol. 93, pp. 212–221, 2012. View at Google Scholar
  45. G. J. Raymond, L. D. Raymond, K. D. Meade-White et al., “Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains,” Journal of Virology, vol. 81, no. 8, pp. 4305–4314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Soto, “Constraining the loop, releasing prion infectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 10–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. D. Kurt, G. C. Telling, M. D. Zabel, and E. A. Hoover, “Trans-species amplification of PrPCWD and correlation with rigid loop 170N,” Virology, vol. 387, no. 1, pp. 235–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Johnson, J. Johnson, J. P. Vanderloo, D. Keane, J. M. Aiken, and D. McKenzie, “Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease,” Journal of General Virology, vol. 87, no. 7, pp. 2109–2114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. G. Collee, R. Bradley, and P. P. Liberski, “Variant CJD (vCJD) and bovine spongiform encephalopathy (BSE): 10 and 20 years on: part 2,” Folia Neuropathologica, vol. 44, no. 2, pp. 102–110, 2006. View at Google Scholar · View at Scopus
  50. D. C. Gajdusek and V. Zigas, “Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population,” The New England Journal of Medicine, vol. 257, no. 20, pp. 974–978, 1957. View at Google Scholar
  51. J. Collinge, “Prion diseases of humans and animals: their causes and molecular basis,” Annual Review of Neuroscience, vol. 24, pp. 519–550, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Collins, V. A. Lawson, and C. L. Masters, “Transmissible spongiform encephalopathies,” Lancet, vol. 363, no. 9402, pp. 51–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. W. J. Hadlow, “Scrapie and kuru,” The Lancet, vol. 274, no. 7097, pp. 289–290, 1959. View at Google Scholar · View at Scopus
  54. D. C. Gajdusek, “Unconventional viruses and the origin and disappearance of Kuru,” Science, vol. 197, no. 4307, pp. 943–960, 1977. View at Google Scholar · View at Scopus
  55. R. L. Klitzman, M. P. Alpers, and D. C. Gajdusek, “The natural incubation period of kuru and the episodes of transmission in three clusters of patients,” Neuroepidemiology, vol. 3, no. 1, pp. 3–20, 1984. View at Google Scholar · View at Scopus
  56. M. B. Coulthart and N. R. Cashman, “Variant Creutzfeldt-Jakob disease: a summary of current scientific knowledge in relation to public health,” Canadian Medical Association Journal, vol. 165, no. 1, pp. 51–58, 2001. View at Google Scholar · View at Scopus
  57. K. Hsiao, H. F. Baker, T. J. Crow et al., “Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome,” Nature, vol. 338, no. 6213, pp. 342–345, 1989. View at Google Scholar · View at Scopus
  58. A. Aguzzi, “Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis,” Journal of Neurochemistry, vol. 97, no. 6, pp. 1726–1739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Glatzel, P. M. Ott, T. Linder et al., “Human prion diseases: epidemiology and integrated risk assessment,” Lancet Neurology, vol. 2, no. 12, pp. 757–763, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Aguzzi and A. M. Calella, “Prions: protein aggregation and infectious diseases,” Physiological Reviews, vol. 89, no. 4, pp. 1105–1152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Will, “New variant Creutzfeldt-Jakob disease,” Biomedicine and Pharmacotherapy, vol. 53, no. 1, pp. 9–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Zeidler, G. E. Stewart, C. R. Barraclough et al., “New variant Creutzfeldt-Jakob disease: neurological features and diagnostic tests,” Lancet, vol. 350, no. 9082, pp. 903–907, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. A. H. Peden, M. W. Head, D. L. Ritchie, J. E. Bell, and J. W. Ironside, “Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient,” Lancet, vol. 364, no. 9433, pp. 527–529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Brown, M. Preece, J. P. Brandel et al., “Iatrogenic Creutzfeldt-Jakob disease at the millennium,” Neurology, vol. 55, no. 8, pp. 1075–1081, 2000. View at Google Scholar · View at Scopus
  65. D. E. Garfin, D. P. Stites, L. A. Zitnik, and S. B. Prusiner, “Suppression of polyclonal B cell activation in scrapie-infected C3H/HeJ mice,” Journal of Immunology, vol. 120, no. 6, pp. 1986–1990, 1978. View at Google Scholar · View at Scopus
  66. K. C. Kasper, D. P. Stites, K. A. Bowman et al., “Immunological studies of scrapie infection,” Journal of Neuroimmunology, vol. 3, no. 3, pp. 187–201, 1982. View at Publisher · View at Google Scholar
  67. K. C. Kasper, K. Bowman, D. P. Stites, and S. B. Prusiner, “Toward development of assays for scrapie-specific antibodies,” in Hamster Immune Responses in Infectious and Oncological Diseases, J. W. Streilein, D. A. Hart, J. Stein-Streilein, W. R. Duncan, and R. E. Billingham, Eds., pp. 401–413, Plenum Press, New York, NY, USA, 1981. View at Google Scholar
  68. A. G. Dickinson and H. Fraser, “Genetical control of the concentration of ME7 scrapie agent in mouse spleen,” Journal of Comparative Pathology, vol. 79, no. 3, pp. 363–366, 1969. View at Google Scholar · View at Scopus
  69. D. P. Stites, D. E. Garfin, and S. B. Prusiner, “The immunology of scrapie,” in Slow Transmissible Diseases of the Nervous System, S. B. Prusiner and W. J. Hadlow, Eds., pp. 211–221, Academic Press, New York, NY, USA, 1979. View at Google Scholar
  70. S. B. Prusiner, D. E. Garfin, S. P. Cochran et al., “Experimental scrapie in the mouse: electrophoretic and sedimentation properties of the partially purified agent,” Journal of Neurochemistry, vol. 35, no. 3, pp. 574–582, 1980. View at Google Scholar
  71. S. B. Prusiner, “Novel proteinaceous infectious particles cause scrapie,” Science, vol. 216, no. 4542, pp. 136–144, 1982. View at Google Scholar · View at Scopus
  72. S. B. Prusiner, D. E. Garfin, S. P. Cochran et al., “Evidence for hydrophobic domains on the surface of the scrapie agent,” Transactions of the American Neurological Association, vol. 103, pp. 62–64, 1978. View at Google Scholar · View at Scopus
  73. S. B. Prusiner, M. P. McKinley, D. F. Groth et al., “Scrapie agent contains a hydrophobic protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6675–6679, 1981. View at Google Scholar · View at Scopus
  74. C. L. Haigh, J. A. Wright, and D. R. Brown, “Regulation of prion protein expression by noncoding regions of the PRNP gene,” Journal of Molecular Biology, vol. 368, no. 4, pp. 915–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Basler, B. Oesch, M. Scott et al., “Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene,” Cell, vol. 46, no. 3, pp. 417–428, 1986. View at Google Scholar
  76. H. A. Kretzschmar, S. B. Prusiner, L. E. Stowring, and S. J. de Armond, “Scrapie prion proteins are synthesized in neurons,” American Journal of Pathology, vol. 122, no. 1, pp. 1–5, 1986. View at Google Scholar · View at Scopus
  77. H. R. Brown, N. L. Goller, R. D. Rudelli et al., “The mRNA encoding the scrapie agent protein is present in a variety of non-neuronal cells,” Acta Neuropathologica, vol. 80, no. 1, pp. 1–6, 1990. View at Google Scholar · View at Scopus
  78. D. R. Brown, B. Schmidt, M. H. Groschup, and H. A. Kretzschmar, “Prion protein expression in muscle cells and toxicity of a prion protein fragment,” European Journal of Cell Biology, vol. 75, no. 1, pp. 29–37, 1998. View at Google Scholar · View at Scopus
  79. P. J. Bosque, C. Ryou, G. Telling et al., “Prions in skeletal muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3812–3817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Liu, R. Li, B. S. Wong et al., “Normal cellular prior protein is preferentially expressed on subpopulations of murine hemopoietic cells,” Journal of Immunology, vol. 166, no. 6, pp. 3733–3742, 2001. View at Google Scholar · View at Scopus
  81. S. Paltrinieri, S. Comazzi, V. Spagnolo, M. Rondena, W. Ponti, and F. Ceciliani, “Bovine doppel (Dpl) and prion protein (PrP) expression on lymphoid tissue and circulating leukocytes,” Journal of Histochemistry and Cytochemistry, vol. 52, no. 12, pp. 1639–1645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Morel, S. Fouquet, D. Chateau et al., “The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1499–1505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Tanji, K. Saeki, Y. Matsumoto et al., “Analysis of PrPc mRNA by in situ hybridization in brain, placenta, uterus and testis of rats,” Intervirology, vol. 38, no. 6, pp. 309–315, 1995. View at Google Scholar · View at Scopus
  84. S. Inoue, M. Tanaka, M. Horiuchi, N. Ishiguro, and M. Shinagawa, “Characterization of the bovine prion protein gene: the expression requires interaction between the promoter and intron,” Journal of Veterinary Medical Science, vol. 59, no. 3, pp. 175–183, 1997. View at Google Scholar · View at Scopus
  85. W. C. Shyu, M. C. Kao, W. Y. Chou, Y. D. Hsu, and B. W. Soong, “Heat shock modulates prion protein expression in human NT-2 cells,” NeuroReport, vol. 11, no. 4, pp. 771–774, 2000. View at Google Scholar · View at Scopus
  86. J. Hope, L. J. Morton, C. F. Farquhar, G. Multhaup, K. Beyreuther, and R. H. Kimberlin, “The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP),” EMBO Journal, vol. 5, no. 10, pp. 2591–2597, 1986. View at Google Scholar · View at Scopus
  87. S. L. Shyng, M. T. Huber, and D. A. Harris, “A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells,” Journal of Biological Chemistry, vol. 268, no. 21, pp. 15922–15928, 1993. View at Google Scholar · View at Scopus
  88. R. Riek, S. Hornemann, G. Wider, M. Billeter, R. Glockshuber, and K. Wuthrich, “NMR structure of the mouse prion protein domain PrP(121-231),” Nature, vol. 382, no. 6587, pp. 180–182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  89. J. C. Bartz, R. A. Bessen, D. Mckenzie, R. F. Marsh, and J. M. Aiken, “Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy,” Journal of Virology, vol. 74, no. 12, pp. 5542–5547, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. D. O. Alonso, C. An, and V. Daggett, “Simulations of biomolecules: characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 360, no. 1795, pp. 1165–1178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Bounhar, Y. Zhang, C. G. Goodyer, and A. LeBlanc, “Prion protein protects human neurons against Bax-mediated apoptosis,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 39145–39149, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Diarra-Mehrpour, S. Arrabal, A. Jalil et al., “Prion protein prevents human breast carcinoma cell line from tumor necrosis factor α-induced cell death,” Cancer Research, vol. 64, no. 2, pp. 719–727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. C. A. Koch, D. Anderson, M. F. Moran, C. Ellis, and T. Pawson, “SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins,” Science, vol. 252, no. 5006, pp. 668–674, 1991. View at Google Scholar · View at Scopus
  94. S. Mouillet-Richard, M. Ermonval, C. Chebassier et al., “Signal transduction through prion protein,” Science, vol. 289, no. 5486, pp. 1925–1928, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Aguzzi, F. Baumann, and J. Bremer, “The prion's elusive reason for being,” Annual Review of Neuroscience, vol. 31, pp. 439–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Graner, A. F. Mercadante, S. M. Zanata et al., “Cellular prion protein binds laminin and mediates neuritogenesis,” Molecular Brain Research, vol. 76, no. 1, pp. 85–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Puig and D. J. Thiele, “Molecular mechanisms of copper uptake and distribution,” Current Opinion in Chemical Biology, vol. 6, no. 2, pp. 171–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. M. D. Harrison and C. T. Dameron, “Molecular mechanisms of copper metabolism and the role of the menkes disease protein,” Journal of Biochemical and Molecular Toxicology, vol. 13, no. 2, pp. 93–106, 1999. View at Google Scholar · View at Scopus
  99. D. J. Waggoner, T. B. Bartnikas, and J. D. Gitlin, “The role of copper in neurodegenerative disease,” Neurobiology of Disease, vol. 6, no. 4, pp. 221–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. E. D. Walter, M. Chattopadhyay, and G. L. Millhauser, “The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity,” Biochemistry, vol. 45, no. 43, pp. 13083–13092, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Quaglio, R. Chiesa, and D. A. Harris, “Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform,” Journal of Biological Chemistry, vol. 276, no. 14, pp. 11432–11438, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. P. C. Pauly and D. A. Harris, “Copper stimulates endocytosis of the prion protein,” Journal of Biological Chemistry, vol. 273, no. 50, pp. 33107–33110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Westergard, H. M. Christensen, and D. A. Harris, “The cellular prion protein PrPc: its physiological function and role in disease,” Biochimica et Biophysica Acta, vol. 1772, no. 6, pp. 629–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. O. Milhavet and S. Lehmann, “Oxidative stress and the prion protein in transmissible spongiform encephalopathies,” Brain Research Reviews, vol. 38, no. 3, pp. 328–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. D. R. Brown, B. S. Wong, F. Hafiz, C. Clive, S. J. Haswell, and I. M. Jones, “Normal prion protein has an activity like that of superoxide dismutase,” Biochemical Journal, vol. 344, no. 1, pp. 1–5, 1999. View at Publisher · View at Google Scholar · View at Scopus
  107. L. B. Chiarini, A. R. Freitas, S. M. Zanata, R. R. Brentani, V. R. Martins, and R. Linden, “Cellular prion protein transduces neuroprotective signals,” EMBO Journal, vol. 21, no. 13, pp. 3317–3326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Weise, R. Sandau, S. Schwarting et al., “Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury,” Stroke, vol. 37, no. 5, pp. 1296–1300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. J. G. Fournier, F. Escaig-Haye, T. Billette de Villemeur, and O. Robain, “Ultrastructural localization of cellular prion protein PrPc in synaptic boutons of normal hamster hippocampus,” Comptes Rendus de l'Academie des Sciences: Serie III, vol. 318, no. 3, pp. 339–344, 1995. View at Google Scholar · View at Scopus
  110. M. Jeffrey, W. G. Halliday, J. Bell et al., “Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus,” Neuropathology and Applied Neurobiology, vol. 26, no. 1, pp. 41–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. P. A. Barrow, C. D. Holmgren, A. J. Tapper, and J. G. Jefferys, “Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie,” Neurobiology of Disease, vol. 6, no. 5, pp. 406–423, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Bouzamondo-Bernstein, S. D. Hopkins, P. Spilman et al., “The neurodegeneration sequence in prion diseases: evidence from functional, morphological and ultrastructural studies of the GABAergic system,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 8, pp. 882–899, 2004. View at Google Scholar · View at Scopus
  113. I. Tobler, S. E. Gaus, T. Deboer et al., “Altered circadian activity rhythms and sleep in mice devoid of prion protein,” Nature, vol. 380, no. 6575, pp. 639–642, 1996. View at Publisher · View at Google Scholar · View at Scopus
  114. J. R. Criado, M. Sánchez-Alavez, B. Conti et al., “Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons,” Neurobiology of Disease, vol. 19, no. 1-2, pp. 255–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. W. Q. Zou and N. R. Cashman, “Acidic pH and detergents enhance in vitro conversion of human brain PrPc to a PrPSc-like form,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43942–43947, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13363–13383, 1998. View at Google Scholar
  117. K.-M. Pan, M. Baldwin, J. Nguyen et al., “Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10962–10966, 1993. View at Publisher · View at Google Scholar
  118. R. A. Bessen and R. F. Marsh, “Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy,” Journal of Virology, vol. 68, no. 12, pp. 7859–7868, 1994. View at Google Scholar · View at Scopus
  119. C. I. Lasmézas, J. P. Deslys, O. Robain et al., “Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein,” Science, vol. 275, no. 5298, pp. 402–405, 1997. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Caughey, D. A. Kocisko, G. J. Raymond, and P. T. Lansbury Jr., “Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state,” Chemistry and Biology, vol. 2, no. 12, pp. 807–817, 1995. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Safar, H. Wille, V. Itri et al., “Eight prion strains have PrP(Sc) molecules with different conformations,” Nature Medicine, vol. 4, no. 10, pp. 1157–1165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Falsig, K. P. Nilsson, T. P. Knowles, and A. Aguzzi, “Chemical and biophysical insights into the propagation of prion strains,” HFSP Journal, vol. 2, no. 6, pp. 332–341, 2008. View at Publisher · View at Google Scholar
  123. D. Peretz, M. R. Scott, D. Groth et al., “Strain-specified relative conformational stability of the scrapie prion protein,” Protein Science, vol. 10, no. 4, pp. 854–863, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Aguzzi, C. Sigurdson, and M. Heikenwaelder, “Molecular mechanisms of prion pathogenesis,” Annual Review of Pathology, vol. 3, pp. 11–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Aguzzi and M. Polymenidou, “Mammalian prion biology: one century of evolving concepts,” Cell, vol. 116, no. 2, pp. 313–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Collinge and A. R. Clarke, “A general model of prion strains and their pathogenicity,” Science, vol. 318, no. 5852, pp. 930–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Bruce, A. Chree, I. McConnell, J. Foster, G. Pearson, and H. Fraser, “Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 343, no. 1306, pp. 405–411, 1994. View at Google Scholar · View at Scopus
  128. D. Krüger, A. Thomzig, G. Lenz, K. Kampf, P. McBride, and M. Beekes, “Faecal shedding, alimentary clearance and intestinal spread of prions in hamsters fed with scrapie,” Veterinary Research, vol. 40, no. 1, p. 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Race, A. Raines, G. J. Raymond, B. Caughey, and B. Chesebro, “Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistant species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease in humans,” Journal of Virology, vol. 75, no. 21, pp. 10106–10112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. C. Weissmann, “The state of the prion,” Nature Reviews Microbiology, vol. 2, no. 11, pp. 861–871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Mallucci, A. Dickinson, J. Linehan, P. C. Klöhn, S. Brandner, and J. Collinge, “Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis,” Science, vol. 302, no. 5646, pp. 871–874, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. B. Chesebro, M. Trifilo, R. Race et al., “Anchorless prion protein results in infectious amyloid disease without clinical scrapie,” Science, vol. 308, no. 5727, pp. 1435–1439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. R. E. Race, S. A. Priola, R. A. Bessen et al., “Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent,” Neuron, vol. 15, no. 5, pp. 1183–1191, 1995. View at Google Scholar · View at Scopus
  134. M. Prinz, F. Montrasio, H. Furukawa et al., “Intrinsic resistance of oligodendrocytes to prion infection,” Journal of Neuroscience, vol. 24, no. 26, pp. 5974–5981, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. A. J. Raeber, R. E. Race, S. Brandner et al., “Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie,” EMBO Journal, vol. 16, no. 20, pp. 6057–6065, 1997. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Jeffrey, C. M. Goodsir, R. E. Race, and B. Chesebro, “Scrapie-specific neuronal lesions are independent of neuronal PrP expression,” Annals of Neurology, vol. 55, no. 6, pp. 781–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. C. R. Trevitt and J. Collinge, “A systematic review of prion therapeutics in experimental models,” Brain, vol. 129, no. 9, pp. 2241–2265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. M. R. Neutra, “M cells in antigen sampling in mucosal tissues,” Current Topics in Microbiology and Immunology, vol. 236, pp. 17–32, 1999. View at Google Scholar
  139. R. S. Mishra, S. Basu, Y. Gu et al., “Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: implications for species barrier in prion uptake from the intestine,” Journal of Neuroscience, vol. 24, no. 50, pp. 11280–11290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. F.-P. Huang, C. F. Farquhar, N. A. Mabbott, M. E. Bruce, and G. G. MacPherson, “Migrating intestinal dendritic cells transport PrPSc from the gut,” Journal of General Virology, vol. 83, no. 1, pp. 267–271, 2002. View at Google Scholar
  141. O. Andreoletti, P. Berthon, D. Marc et al., “Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie,” Journal of General Virology, vol. 81, no. 12, pp. 3115–3126, 2000. View at Google Scholar · View at Scopus
  142. T. Kitamoto, T. Muramoto, S. Mohri, K. Doh-Ura, and J. Tateishi, “Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease,” Journal of Virology, vol. 65, no. 11, pp. 6292–6295, 1991. View at Google Scholar · View at Scopus
  143. M. Heikenwalder, N. Zeller, H. Seeger et al., “Chronic lymphocytic inflammation specifies the organ tropism of prions,” Science, vol. 307, no. 5712, pp. 1107–1110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Seeger, M. Heikenwalder, N. Zeller et al., “Coincident scrapie infection and nephritis lead to urinary prion excretion,” Science, vol. 310, no. 5746, pp. 324–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Glatzel, F. L. Heppner, K. M. Albers, and A. Aguzzi, “Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion,” Neuron, vol. 31, no. 1, pp. 25–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. L. J. van Keulen, A. Bossers, and F. van Zijderveld, “TSE pathogenesis in cattle and sheep,” Veterinary Research, vol. 39, no. 4, article 24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. L. J. van Keulen, B. E. Schreuder, M. E. Vromans, J. P. Langeveld, and M. A. Smits, “Pathogenesis of natural scrapie in sheep,” Archives of Virology, Supplementum, no. 16, pp. 57–71, 2000. View at Google Scholar
  148. K. Hur, J. I. Kim, S. I. Choi, E. K. Choi, R. I. Carp, and Y. S. Kim, “The pathogenic mechanisms of prion diseases,” Mechanisms of Ageing and Development, vol. 123, no. 12, pp. 1637–1647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. S. I. Choi, W. K. Ju, E. K. Choi et al., “Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent,” Acta Neuropathologica, vol. 96, no. 3, pp. 279–286, 1998. View at Publisher · View at Google Scholar · View at Scopus
  150. M. C. Sorgato and A. Bertoli, “From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein?” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 171–174, 2009. View at Publisher · View at Google Scholar
  151. M. K. Sandberg, P. Wallén, M. A. Wikström, and K. Kristensson, “Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Cav 2.2) which is ameliorated by quinacrine treatment,” Neurobiology of Disease, vol. 15, no. 1, pp. 143–151, 2004. View at Publisher · View at Google Scholar
  152. H. Khosravani, Y. Zhang, S. Tsutsui et al., “Prion protein attenuates excitotoxicity by inhibiting NMDA receptors,” Journal of Cell Biology, vol. 181, no. 3, pp. 551–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Spudich, R. Frigg, E. Kilic et al., “Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1,” Neurobiology of Disease, vol. 20, no. 2, pp. 442–449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. C. Soto, “Diagnosing prion diseases: needs, challenges and hopes,” Nature Reviews Microbiology, vol. 2, no. 10, pp. 809–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Ingrosso, V. Vetrugno, F. Cardone, and M. Pocchiari, “Molecular diagnostics of transmissible spongiform encephalopathies,” Trends in Molecular Medicine, vol. 8, no. 6, pp. 273–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. G. P. Saborio, B. Permanne, and C. Soto, “Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding,” Nature, vol. 411, no. 6839, pp. 810–813, 2001. View at Publisher · View at Google Scholar · View at Scopus
  157. P. Saa, J. Castilla, and C. Soto, “Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification,” Journal of Biological Chemistry, vol. 281, no. 46, pp. 35245–35252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. N. R. Deleault, B. T. Harris, J. R. Rees, and S. Supattapone, “Formation of native prions from minimal components in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9741–9746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. C. A. Llewelyn, P. E. Hewitt, R. S. Knight et al., “Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion,” Lancet, vol. 363, no. 9407, pp. 417–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. M. J. Schmerr, K. R. Goodwin, R. C. Cutlip, and A. L. Jenny, “Improvements in a competition assay to detect scrapie prion protein by capillary electrophoresis,” Journal of Chromatography B: Biomedical Applications, vol. 681, no. 1, pp. 29–35, 1996. View at Publisher · View at Google Scholar
  161. M. J. Schmerr, R. C. Cutlip, and A. Jenny, “Capillary isoelectric focusing of the scrapie prion protein,” Journal of Chromatography A, vol. 802, no. 1, pp. 135–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  162. M. J. Schmerr and A. Jenny, “A diagnostic test for scrapie-infected sheep using a capillary electrophoresis immunoassay with fluorescent-labeled peptides,” Electrophoresis, vol. 19, no. 3, pp. 409–414, 1998. View at Publisher · View at Google Scholar · View at Scopus
  163. D. J. Everest, S. Waterhouse, T. Kelly, E. Velo-Rego, and M. J. Sauer, “Effectiveness of capillary electrophoresis fluoroimmunoassay of blood PrPSc for evaluation of scrapie pathogenesis in sheep,” Journal of Veterinary Diagnostic Investigation, vol. 19, no. 5, pp. 552–557, 2007. View at Google Scholar
  164. C. Korth, P. Streit, and B. Oesch, “Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein,” Methods in Enzymology, vol. 309, pp. 106–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  165. K. E. Nazor, F. Kuhn, T. Seward et al., “Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice,” EMBO Journal, vol. 24, no. 13, pp. 2472–2480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Grosset, K. Moskowitz, C. Nelsen, T. Pan, E. Davidson, and C. S. Orser, “Rapid presymptomatic detection of PrPSc via conformationally responsive palindromic PrP peptides,” Peptides, vol. 26, no. 11, pp. 2193–2200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Collinge, “Variant Creutzfeldt-Jakob disease,” Lancet, vol. 354, no. 9175, pp. 317–323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  168. N. R. Cashman and B. Caughey, “Prion diseases—close to effective therapy?” Nature Reviews Drug Discovery, vol. 3, no. 10, pp. 874–884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. D. Dormont, “Approaches to prophylaxis and therapy,” British Medical Bulletin, vol. 66, pp. 281–292, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. D. R. Borchelt, M. Scott, A. Taraboulos, N. Stahl, and S. B. Prusiner, “Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells,” Journal of Cell Biology, vol. 110, no. 3, pp. 743–752, 1990. View at Google Scholar · View at Scopus
  171. B. Caughey and G. J. Raymond, “The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive,” Journal of Biological Chemistry, vol. 266, no. 27, pp. 18217–18223, 1991. View at Google Scholar · View at Scopus
  172. R. M. Zinkernagel and H. Hengartner, “Regulation of the immune response by antigen,” Science, vol. 293, no. 5528, pp. 251–253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  173. F. L. Heppner and A. Aguzzi, “Recent developments in prion immunotherapy,” Current Opinion in Immunology, vol. 16, no. 5, pp. 594–598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. R. Gabizon, M. P. McKinley, D. Groth, and S. B. Prusiner, “Immunoaffinity purification and neutralization of scrapie prion infectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 18, pp. 6617–6621, 1988. View at Google Scholar · View at Scopus
  175. R. J. Kascsak, R. Rubenstein, P. A. Merz et al., “Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins,” Journal of Virology, vol. 61, no. 12, pp. 3688–3693, 1987. View at Google Scholar · View at Scopus
  176. M. Horiuchi and B. Caughey, “Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state,” EMBO Journal, vol. 18, no. 12, pp. 3193–3203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Enari, E. Flechsig, and C. Weissmann, “Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 16, pp. 9295–9299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Gilch, F. Wopfner, I. Renner-Müller et al., “Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18524–18531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. D. Peretz, R. A. Williamson, K. Kaneko et al., “Antibodies inhibit prion propagation and clear cell cultures of prion infectivity,” Nature, vol. 412, no. 6848, pp. 739–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  180. V. Perrier, J. Solassol, C. Crozet et al., “Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation,” Journal of Neurochemistry, vol. 89, no. 2, pp. 454–463, 2004. View at Publisher · View at Google Scholar
  181. C. L. Kim, A. Umetani, T. Matsui, N. Ishiguro, M. Shinagawa, and M. Horiuchi, “Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies,” Virology, vol. 320, no. 1, pp. 40–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  182. A. Cardinale, I. Filesi, V. Vetrugno, M. Pocchiari, M. S. Sy, and S. Biocca, “Trapping prion protein in the endoplasmic reticulum impairs PrPC maturation and prevents PrPSc accumulation,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 685–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. V. Vetrugno, A. Cardinale, I. Filesi et al., “KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1791–1797, 2005. View at Publisher · View at Google Scholar
  184. A. R. White, P. Enever, M. Tayebi et al., “Monoclonal antibodies inhibit prion replication and delay the development of prion disease,” Nature, vol. 422, no. 6927, pp. 80–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  185. E. M. Sigurdsson, M. S. Sy, R. Li et al., “Anti-prion antibodies for prophylaxis following prion exposure in mice,” Neuroscience Letters, vol. 336, no. 3, pp. 185–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  186. F. L. Heppner, C. Musahl, I. Arrighi et al., “Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies,” Science, vol. 294, no. 5540, pp. 178–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  187. C. A. Weurtzer, M. A. Sulivan, X. Qiu, and H. J. Federoff, “CNS delivery of vectored prion-specific single-chain antibodies delays disease onset,” Molecular Therapy, vol. 16, no. 3, pp. 481–486, 2008. View at Google Scholar
  188. E. M. Sigurdsson, D. R. Brown, M. Daniels et al., “Immunization delays the onset of prion disease in mice,” American Journal of Pathology, vol. 161, no. 1, pp. 13–17, 2002. View at Google Scholar · View at Scopus
  189. A. Schwarz, O. Krätke, M. Burwinkel et al., “Immunisation with a synthetic prion protein-derived peptide prolongs survival times of mice orally exposed to the scrapie agent,” Neuroscience Letters, vol. 350, no. 3, pp. 187–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. M. B. Rosset, A. Sacquin, S. Lecollinet et al., “Dendritic cell-mediated-immunization with xenogenic PrP and adenoviral vectors breaks tolerance and prolongs mice survival against experimental scrapie,” PLoS ONE, vol. 4, no. 3, Article ID e4917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. F. Goñi, F. Prelli, F. Schreiber et al., “High titers of mucosal and systemic anti-PrP antibodies abrogate oral prion infection in mucosal-vaccinated mice,” Neuroscience, vol. 153, no. 3, pp. 679–686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. C. Hundt, J. M. Peyrin, S. Haïk et al., “Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor,” EMBO Journal, vol. 20, no. 21, pp. 5876–5886, 2001. View at Publisher · View at Google Scholar · View at Scopus
  193. C. L. Kim, A. Karino, N. Ishiguro, M. Shinagawa, M. Sato, and M. Horiuchi, “Cell-surface retention of PrPC by anti-PrP antibody prevents protease-resistant PrP formation,” Journal of General Virology, vol. 85, no. 11, pp. 3473–3482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  194. P. J. Peters, A. Mironov Jr., D. Peretz et al., “Trafficking of prion proteins through a caveolae-mediated endosomal pathway,” Journal of Cell Biology, vol. 162, no. 4, pp. 703–717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. S. L. Shyng, J. E. Heuser, and D. A. Harris, “A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits,” Journal of Cell Biology, vol. 125, no. 6, pp. 1239–1250, 1994. View at Publisher · View at Google Scholar · View at Scopus
  196. D. R. Borchelt, A. Taraboulos, and S. B. Prusiner, “Evidence for synthesis of scrapie prion proteins in the endocytic pathway,” Journal of Biological Chemistry, vol. 267, no. 23, pp. 16188–16199, 1992. View at Google Scholar · View at Scopus
  197. S. Adelstein, H. Pritchard-Briscoe, T. A. Anderson et al., “Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen,” Science, vol. 251, no. 4998, pp. 1223–1225, 1991. View at Google Scholar · View at Scopus
  198. S. L. Tiegs, D. M. Russell, and D. Nemazee, “Receptor editing in self-reactive bone marrow B cells,” Journal of Experimental Medicine, vol. 177, no. 4, pp. 1009–1020, 1993. View at Google Scholar · View at Scopus
  199. L. Solforosi, J. R. Criado, D. B. McGavern et al., “Cross-linking cellular prion protein triggers neuronal apoptosis in vivo,” Science, vol. 303, no. 5663, pp. 1514–1516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. E. Hanan, O. Goren, M. Eshkenazy, and B. Solomon, “Immunomodulation of the human prion peptide 106-126 aggregation,” Biochemical and Biophysical Research Communications, vol. 280, no. 1, pp. 115–120, 2001. View at Publisher · View at Google Scholar
  201. M. F. Koller, T. Grau, and P. Christen, “Induction of antibodies against murine full-length prion protein in wild-type mice,” Journal of Neuroimmunology, vol. 132, no. 1-2, pp. 113–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  202. M. B. Rosset, C. Ballerini, S. Gregoire, P. Metharom, C. Carnaud, and P. Aucouturier, “Breaking immune tolerance to the prion protein using prion protein peptides plus oligodeoxynucleotide-CpG in mice,” Journal of Immunology, vol. 172, no. 9, pp. 5168–5174, 2004. View at Google Scholar · View at Scopus
  203. M. Polymenidou, F. L. Heppner, E. C. Pellicioli et al., “Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, supplement 2, pp. 14670–14676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. E. Hanan, S. A. Priola, and B. Solomon, “Antiaggregating antibody raised against human PrP 106-126 recognizes pathological and normal isoforms of the whole prion protein,” Cellular and Molecular Neurobiology, vol. 21, no. 6, pp. 693–703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  205. L. Li, S. Napper, and N. R. Cashman, “Immunotherapy for prion diseases: opportunities and obstacles,” Immunotherapy, vol. 2, no. 2, pp. 269–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. F. Goñi, E. Knudsen, F. Schreiber et al., “Mucosal vaccination delays or prevents prion infection via an oral route,” Neuroscience, vol. 133, no. 2, pp. 413–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  207. J. A. Nicolll, D. Wilkinson, C. Holmes, P. Steart, H. Markham, and R. O. Weller, “Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report,” Nature Medicine, vol. 9, no. 4, pp. 448–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  208. B. Solomon, “Alzheimer's disease and immunotherapy,” Current Alzheimer Research, vol. 1, no. 3, pp. 149–163, 2004. View at Google Scholar
  209. S. Gregoire, A. S. Bergot, C. Feraudet, C. Carnaud, P. Aucouturier, and M. B. Rosset, “The murine B cell repertoire is severely selected against endogenous cellular prion protein,” Journal of Immunology, vol. 175, no. 10, pp. 6443–6449, 2005. View at Google Scholar
  210. D. Nikles, P. Bach, K. Boller et al., “Circumventing tolerance to the prion protein (PrP): vaccination with PrP-displaying retrovirus particles induces humoral immune responses against the native form of cellular PrP,” Journal of Virology, vol. 79, no. 7, pp. 4033–4042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. A. Handisurya, S. Gilch, D. Winter et al., “Vaccination with prion peptide-displaying papillomavirus-like particles induces autoantibodies to normal prion protein that interfere with pathologic prion protein production in infected cells,” FEBS Journal, vol. 274, no. 7, pp. 1747–1758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. R. Kirnbauer, F. Booy, N. Cheng, D. R. Lowy, and J. T. Schiller, “Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 24, pp. 12180–12184, 1992. View at Publisher · View at Google Scholar · View at Scopus
  213. A. Krug, A. Towarowski, S. Britsch et al., “Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with Cd40 ligand to induce high amounts of IL-12,” European Journal of Immunology, vol. 31, no. 10, pp. 3026–3037, 2001. View at Publisher · View at Google Scholar · View at Scopus
  214. A. M. Krieg, A. K. Yi, S. Matson et al., “CpG motifs in bacterial DNA trigger direct B-cell activation,” Nature, vol. 374, no. 6522, pp. 546–549, 1995. View at Google Scholar · View at Scopus
  215. D. Ishibashi, H. Yamanaka, N. Yamaguchi et al., “Immunization with recombinant bovine but not mouse prion protein delays the onset of disease in mice inoculated with a mouse-adapted prion,” Vaccine, vol. 25, no. 6, pp. 985–992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  216. Y. Tang, L. Zhang, J. Yuan et al., “Multistep process through which adenoviral vector vaccine overcomes anergy to tumor-associated antigens,” Blood, vol. 104, no. 9, pp. 2704–2713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  217. E. Paramithiotis, M. Pinard, T. Lawton et al., “A prion protein epitope selective for the pathologically misfolded conformation,” Nature Medicine, vol. 9, no. 7, pp. 893–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. J. Pilon, C. Loiacono, D. Okeson et al., “Anti-prion activity generated by a novel vaccine formulation,” Neuroscience Letters, vol. 429, no. 2-3, pp. 161–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  219. P. D. Hedlin, N. R. Cashman, L. Li et al., “Design and delivery of a cryptic PrPc epitope for induction of PrPSc-specific antibody responses,” Vaccine, vol. 28, no. 4, pp. 981–988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  220. W. Guest, S. Plotkin, and N. Cashman, “An estimate of the PrPC beta sheet dissociation Gibbs free energy: implications for prion conversion,” NeuroPrion. In press.
  221. A. W. Purcell, J. McCluskey, and J. Rossjohn, “More than one reason to rethink the use of peptides in vaccine design,” Nature Reviews Drug Discovery, vol. 6, no. 5, pp. 404–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. A. W. Purcell, W. Zeng, N. A. Mifsud, L. K. Ely, W. A. Macdonald, and D. C. Jackson, “Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design,” Journal of Peptide Science, vol. 9, no. 5, pp. 255–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  223. M. M. Conner, M. W. Miller, M. R. Ebinger, and K. P. Burnham, “A meta-baci approach for evaluating management intervention on chronic wasting disease in mule deer,” Ecological Applications, vol. 17, no. 1, pp. 140–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. J. Blancou, M. P. Kieny, R. Lathe et al., “Oral vaccination of the fox against rabies using a live recombinant vaccinia virus,” Nature, vol. 322, no. 6077, pp. 373–375, 1986. View at Google Scholar
  225. M. L. Cross, B. M. Buddle, and F. E. Aldwell, “The potential of oral vaccines for disease control in wildlife species,” Veterinary Journal, vol. 174, no. 3, pp. 472–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  226. J. E. Gross and M. M. W. Miller, “Chronic wasting disease in mule deer: disease dynamics and control,” Journal of Wildlife Management, vol. 65, no. 2, pp. 205–215, 2001. View at Google Scholar · View at Scopus