Table of Contents Author Guidelines Submit a Manuscript
ISRN Nanotechnology
Volume 2012 (2012), Article ID 262703, 9 pages
Research Article

TiO2 Transparent Thin Film for Eliminating Toluene

1Advanced Material Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim, Kedah, Malaysia
2Institute for Environmental Management Technology, National Institute of Advanced Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Japan
3Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
4Faculty of Science and Information Technology, Universiti Teknologi Petronas (UTP), Perak, Tronoh, Malaysia

Received 13 April 2012; Accepted 10 May 2012

Academic Editors: K. G. Beltsios, M. Fernández-García, and K. H. Park

Copyright © 2012 Suhaina M. Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


TiO2 nanoparticles undergo a single-phase transition: from amorphous to anatase when calcined at 450°C. It can be noticed from the XRD and AFM results that the particle size of TiO2 is below 30 nm. Results from viscometer and UV-Vis analysis showed that the film thickness is closely related to the viscosity of dip-coating solutions. It was found that the contact angle for water decreased after being illuminated with UV light at certain periods of time. This indicates that these films exhibit hydrophilic properties that can be used on self-cleaning surfaces and antifogging mirrors. Heterogeneous photocatalytic oxidation allows the oxidation of airborne volatile organic compounds (VOCs) into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. Titanium dioxide, due to its chemical stability, nontoxicity, and low cost, represents one of the most efficient photocatalysts. Photocatalytic activity of the TiO2 thin films was evaluated by using toluene and results showed that this film is successful in decomposing toluene.