Table of Contents
ISRN Polymer Science
Volume 2012 (2012), Article ID 282515, 6 pages
http://dx.doi.org/10.5402/2012/282515
Research Article

Evaluation of the Mechanical Properties of Polypropylene-Aluminum-Dross Composite

1Department of Metallurgical and Materials Engineering, University of Lagos, Lagos 101017, Nigeria
2Department of Chemical Engineering, University of Lagos, Lagos 101017, Nigeria

Received 11 January 2012; Accepted 13 February 2012

Academic Editor: Y. Kissin

Copyright © 2012 S. O. Adeosun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Manfredi, W. Wuth, and I. Bohlinger, “Characterizing the physical and chemical properties of aluminum dross,” JOM, vol. 49, no. 11, pp. 48–51, 1997. View at Google Scholar · View at Scopus
  2. T. W. Unger and M. Beckmann, “Salt slag processing for recycling, light metals,” in TMS Annual Meeting, E. R. Cutshall, Ed., pp. 1159–1162, San Diego, Calif, USA, 1992.
  3. V. M. Kevorkijan, “The quality of aluminum dross particles and cost-effective reinforcement for structural aluminum-based composites,” Composites Science and Technology, vol. 59, no. 11, pp. 1745–1751, 1999. View at Google Scholar · View at Scopus
  4. H. N. Yoshimura, A. P. Abreu, A. L. Molisani, A. C. de Camargo, J. C. S. Portela, and N. E. Narita, “Evaluation of aluminum dross waste as raw material for refractories,” Ceramics International, vol. 34, no. 3, pp. 581–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Kikuchi, “Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker,” Resources, Conservation and Recycling, vol. 31, no. 2, pp. 137–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Yoo, H. S. Yoon, H. D. Jang et al., “Synthesis of aluminum isopropoxide from aluminum dross,” Korean Journal of Chemical Engineering, vol. 23, no. 4, pp. 683–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Dash, B. R. Das, B. C. Tripathy, I. N. Bhattacharya, and S. C. Das, “Acid dissolution of alumina from waste aluminium dross,” Hydrometallurgy, vol. 92, no. 1-2, pp. 48–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. R. Das, B. Dash, B. C. Tripathy, I. N. Bhattacharya, and S. C. Das, “Production of η-alumina from waste aluminium dross,” Minerals Engineering, vol. 20, no. 3, pp. 252–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Lucheva, T. Tsonev, and R. Petkov, “Non-waste aluminium dross recycling,” Journal of the University of Chemical Technology and Metallurgy, vol. 40, no. 4, pp. 335–338, 2005. View at Google Scholar
  10. N. Murayama, K. Arimura, N. Okajima, and J. Shibata, “Effect of structure-directing agent on AlPO4-n synthesis from aluminum dross,” International Journal of Mineral Processing, vol. 93, no. 2, pp. 110–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Murayama, N. Okajima, S. Yamaoka, H. Yamamoto, and J. Shibata, “Hydrothermal synthesis of AlPO4-5 type zeolitic materials by using aluminum dross as a raw material,” Journal of the European Ceramic Society, vol. 26, no. 4-5, pp. 459–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kim, K. Biswas, K.-W. Jhon, S.-Y. Jeong, and W.-S. Ahn, “Synthesis of AlPO4-5 and CrAPO-5 using aluminum dross,” Journal of Hazardous Materials, vol. 169, no. 1-3, pp. 919–925, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. M. Fang, H. Du, W. Xu, X. Meng, and W. Pang, “Microwave preparation of molecular sieve AlPO4-5 with nanometer sizes,” Microporous Materials, vol. 9, no. 1-2, pp. 59–61, 1997. View at Google Scholar · View at Scopus
  14. J. Z. Liang, “Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): a review,” Journal of Applied Polymer Science, vol. 83, no. 7, pp. 1547–1555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Zebarjad, R. Bagheri, A. Lazzeri, and S. Serajzadeh, “Fracture behaviour of isotactic polypropylene under static loading condition,” Materials and Design, vol. 24, no. 2, pp. 105–109, 2003. View at Google Scholar · View at Scopus
  16. B. Alcock, N. O. Cabrera, N. M. Barkoula, J. Loos, and T. Peijs, “The mechanical properties of unidirectional all-polypropylene composites,” Composites Part A, vol. 37, no. 5, pp. 716–726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Yang, Q. Yang, G. Li, Y. Zhang, and P. Zhang, “Mechanical properties and morphologies of polypropylene/single-filler or hybrid-filler calcium carbonate composites,” Polymer Engineering and Science, vol. 47, no. 2, pp. 95–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Cho, M. S. Joshi, and C. T. Sun, “Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles,” Composites Science and Technology, vol. 66, no. 13, pp. 1941–1952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. W. Leong, M. B. Abu Bakar, Z. A. M. Ishak, A. Ariffin, and B. Pukanszky, “Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites,” Journal of Applied Polymer Science, vol. 91, no. 5, pp. 3315–3326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zheng, Z. Shen, C. Cai, S. Ma, and Y. Xing, “The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites,” Journal of Hazardous Materials, vol. 163, no. 2-3, pp. 600–606, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. S. Yang, H. J. Kim, J. Son, H. J. Park, B. J. Lee, and T. S. Hwang, “Rice-husk flour filled polypropylene composites; mechanical and morphological study,” Composite Structures, vol. 63, no. 3-4, pp. 305–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. D. Rozman, G. B. Peng, and Z. A. M. Ishak, “The effect of compounding techniques on the mechanical properties of oil palm empty fruit bunch-polypropylene composites,” Journal of Applied Polymer Science, vol. 70, no. 13, pp. 2647–2655, 1998. View at Google Scholar · View at Scopus
  23. T. T. L. Doan, S. L. Gao, and E. Mäder, “Jute/polypropylene composites I. Effect of matrix modification,” Composites Science and Technology, vol. 66, no. 7-8, pp. 952–963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Inoue and T. Suzuki, “Selective cross linking reaction in polymer blends-the effects of the cross linking of dispersed EPDM in particles on the impact behaviour of PP/EPDM blends,” Journal of Applied Polymer, vol. 56, no. 9, pp. 1113–1125, 1995. View at Publisher · View at Google Scholar