Table of Contents
ISRN Materials Science
Volume 2012 (2012), Article ID 305692, 13 pages
http://dx.doi.org/10.5402/2012/305692
Review Article

Computationally Efficient, Fully Coupled Multiscale Modeling of Materials Phenomena Using Calibrated Localization Linkages

Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA

Received 26 August 2012; Accepted 17 October 2012

Academic Editors: F. M. Labajos and T. Xu

Copyright © 2012 Surya R. Kalidindi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Most modern physics-based multiscale materials modeling and simulation tools aim to take into account the important details of the material internal structure at multiple length scales. However, they are extremely computationally expensive. In recent years, a novel data science enabled framework has been formulated for effective scale-bridging that is central to practical multiscaling. A salient feature of this new approach is its ability to capture heterogeneity of fields of interest at different length scales. In this approach, the computations at the mesoscale are handled using a novel data science approach called materials knowledge systems (MKS). The MKS approach has enjoyed tremendous success in building highly accurate and computationally efficient metamodels for localization (i.e., mesoscale spatial distribution of a macroscale imposed field such as stress or strain rate) in simulating a number of different multiscale materials phenomena. MKS derives its accuracy from the fact that it is calibrated to results from previously established numerical models for the phenomena of interest, while its computational efficiency comes from the use of fast Fourier transforms. The current capabilities and the future outlook for the MKS framework are expounded in this paper.