Table of Contents
ISRN Ecology
Volume 2012 (2012), Article ID 329898, 9 pages
http://dx.doi.org/10.5402/2012/329898
Research Article

Impact of Maize Formulated Herbicides Mesotrione and S-Metolachlor, Applied Alone and in Mixture, on Soil Microbial Communities.

1LMGE, Clermont Université, Université Blaise Pascal, 63000 Clermont-Ferrand, France
2UMR 6023, CNRS, and Laboratoire Microorganismes : Génome et Environnement, Université Blaise Pascal, 63177 Aubière, France
3SEESIB, Clermont Université, Université Blaise Pascal, 63000 Clermont-Ferrand, France
4UMR 6504, CNRS, and Laboratoire de Synthèse et Etude de Systèmes à Intérêt Biologique, 63177 Aubière, France

Received 19 September 2011; Accepted 14 November 2011

Academic Editors: G. Berg and D. C. Moon

Copyright © 2012 Pierre Joly et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Lo, “Effect of pesticides on soil microbial community,” Journal of Environmental Science and Health—Part B Pesticides, Food Contaminants, and Agricultural Wastes, vol. 45, no. 5, pp. 348–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. C. M. Guimarães, J. B. A. Arends, D. van der Ha, T. van de Wiele, N. Boon, and W. Verstraete, “Microbial services and their management: recent progresses in soil bioremediation technology,” Applied Soil Ecology, vol. 46, no. 2, pp. 157–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Mitchell, D. W. Bartlett, T. E. M. Fraser et al., “Mesotrione: a new selective herbicide for use in maize,” Pest Management Science, vol. 57, no. 2, pp. 120–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. B. LI, J. T. Cheng, X. F. Wang, Y. Zhou, and W. P. Liu, “Degradation of herbicides atrazine and bentazone applied alone and in combination in soils,” Pedosphere, vol. 18, no. 2, pp. 265–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tejada, “Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate+diflufenican herbicides,” Chemosphere, vol. 76, no. 3, pp. 365–373, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. Muyzer, E. C. De Waal, and A. G. Uitterlinden, “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 59, no. 3, pp. 695–700, 1993. View at Google Scholar · View at Scopus
  7. IFEN, “Les pesticides dans l'eau, données 2003 et 2004,” 2006. View at Google Scholar
  8. C. D. S. Tomlin, “The e-pesticide manual,” in Council TBCP, 12th edition, 2002. View at Google Scholar
  9. O. Crouzet, I. Batisson, P. Besse-Hoggan et al., “Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach,” Soil Biology and Biochemistry, vol. 42, no. 2, pp. 193–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Bonnet, F. Bonnemoy, M. Dusser, and J. Bohatier, “Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: tetrahymena pyriformis and Vibrio fischeri,” Archives of Environmental Contamination and Toxicology, vol. 55, no. 4, pp. 576–583, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. L. A. Burrows and C. A. Edwards, “The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems,” European Journal of Soil Biology, vol. 38, no. 3-4, pp. 245–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Dubois, K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “A colorimetric method for the determination of sugars,” Nature, vol. 168, no. 4265, p. 167, 1951. View at Publisher · View at Google Scholar · View at Scopus
  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  14. E. D. Rhine, G. K. Sims, R. L. Mulvaney, and E. J. Pratt, “Improving the Berthelot reaction for determining ammonium in soil extracts and water,” Soil Science Society of America Journal, vol. 62, no. 2, pp. 473–480, 1998. View at Google Scholar · View at Scopus
  15. M. A. Murcia, A. Vera, R. Ortiz, and F. García-Carmona, “Measurement of ion levels of spinach grown in different fertilizer regimes using ion chromatography,” Food Chemistry, vol. 52, no. 2, pp. 161–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Lin and P. C. Brookes, “Comparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils,” Soil Biology and Biochemistry, vol. 28, no. 7, pp. 933–939, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. N. C. Banning and D. V. Murphy, “Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure,” Applied Soil Ecology, vol. 40, no. 1, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biology and Biochemistry, vol. 19, no. 6, pp. 703–707, 1987. View at Google Scholar · View at Scopus
  19. S. Tsujimura, H. Nakahara, and N. Ishida, “Estimation of soil algal biomass in salinized irrigation land: a comparison of culture dilution and chlorophyll a extraction methods,” Journal of Applied Phycology, vol. 12, no. 1, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. SCOR-UNESCO, Determination of Photosynthetic Pigments in Sea Waters, Center UP, New York, NY, USA, 1966.
  21. H. Heuer, M. Krsek, P. Baker, K. Smalla, and E. M. H. Wellington, “Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients,” Applied and Environmental Microbiology, vol. 63, no. 8, pp. 3233–3241, 1997. View at Google Scholar · View at Scopus
  22. T. J. White, T. D. Bruns, S. Lee, and J. Taylor, Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics, Academic Press, New York, NY, USA, 1990.
  23. O. Hammer, D. A. T. Harper, and P. D. Ryan, PAST: Palaeontological Statistics Software Package for Education and Data Analyses, P. Electronica, 2001.
  24. N. Fromin, J. Hamelin, S. Tarnawski et al., “Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns,” Environmental Microbiology, vol. 4, no. 11, pp. 634–643, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Champaign, Ill, USA, 1963.
  26. J. S. Dyson, S. Beulke, C. D. Brown, and M. C. G. Lane, “Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications,” Journal of Environmental Quality, vol. 31, no. 2, pp. 613–618, 2002. View at Google Scholar · View at Scopus
  27. S. M. Novak, J. M. Portal, and M. Schiavon, “Effects of soil type upon metolachlor losses in subsurface drainage,” Chemosphere, vol. 42, no. 3, pp. 235–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Durand, P. Amato, M. Sancelme, A. M. Delort, B. Combourieu, and P. Besse-Hoggan, “First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione,” Letters in Applied Microbiology, vol. 43, no. 2, pp. 222–228, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. Y. MA, W. P. LIU, and Y. Z. WEN, “Enantioselective degradation of Rac-metolachlor and S-metolachlor in soil,” Pedosphere, vol. 16, no. 4, pp. 489–494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. P. M. White, T. L. Potter, and A. K. Culbreath, “Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics,” Science of the Total Environment, vol. 408, no. 6, pp. 1393–1402, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. C. Beigel, M. P. Charnay, and E. Barriuso, “Degradation of formulated and unformulated triticonazole fungicide in soil: effect of application rate,” Soil Biology and Biochemistry, vol. 31, no. 4, pp. 525–534, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. K. A. Krogh, B. Halling-Sørensen, B. B. Mogensen, and K. V. Vejrup, “Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review,” Chemosphere, vol. 50, no. 7, pp. 871–901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Johnsen, C. S. Jacobsen, V. Torsvik, and J. Sørensen, “Pesticide effects on bacterial diversity in agricultural soils—a review,” Biology and Fertility of Soils, vol. 33, no. 6, pp. 443–453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. Zabaloy, J. L. Garland, and M. A. Gómez, “An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina,” Applied Soil Ecology, vol. 40, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Chen, C. A. Edwards, and S. Subler, “A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth,” Applied Soil Ecology, vol. 18, no. 1, pp. 69–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Lin and P. C. Brookes, “Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils,” Soil Biology and Biochemistry, vol. 31, no. 14, pp. 1999–2014, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Pal, K. Chakrabarti, A. Chakraborty, and A. Chowdhury, “Degradation and effects of pesticides on soil microbiological parameters-a review,” International Journal of Agricultural Research, vol. 1, pp. 240–258, 2006. View at Google Scholar
  38. D. A. Wardle and D. Parkinson, “Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass,” Plant and Soil, vol. 134, no. 2, pp. 209–219, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Wardle and D. Parkinson, “Effects of three herbicides on soil microbial biomass and activity,” Plant and Soil, vol. 122, no. 1, pp. 21–28, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Chèneby, A. Brauman, B. Rabary, and L. Philippot, “Differential responses of nitrate reducer community size, structure, and activity to tillage systems,” Applied and Environmental Microbiology, vol. 75, no. 10, pp. 3180–3186, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. Henry, D. Bru, B. Stres, S. Hallet, and L. Philippot, “Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils,” Applied and Environmental Microbiology, vol. 72, no. 8, pp. 5181–5189, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. G. A. Kowalchuk and J. R. Stephen, “Ammonia-oxidizing bacteria: a model for molecular microbial ecology,” Annual Review of Microbiology, vol. 55, pp. 485–529, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus