Table of Contents
ISRN Ophthalmology
Volume 2012 (2012), Article ID 346297, 11 pages
http://dx.doi.org/10.5402/2012/346297
Research Article

Properties of Flicker ERGs in Rat Models with Retinal Degeneration

Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi’an, China

Received 27 January 2012; Accepted 15 March 2012

Academic Editors: A. M. Avunduk, A. Berta, B. Bui, K. H. Eibl, P. Gouras, and M. Vidal-Sanz

Copyright © 2012 Jing An et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Purpose. To describe the characteristics of rod and cone functions in rat models for congenital stationary night blindness (CSNB) and retinal cone dysfunction (RCD). Methods. Rod and cone function were isolated by recording the rod-/cone-driven flicker and blue light flicker electroretinograms (ERGs). Results. During dark adaptation, the amplitudes of flicker ERGs in CSNB rats were lower than those in control rats; the responses of RCD rats were similar to control rats. During light adaptation, the amplitudes of flicker ERGs in CSNB rats were reduced; whereas the responses of RCD rats were not detected. Blue flicker ERGs were not observed in CSNB rats at lower frequencies. The cone driven critical flicker frequencies (CFFs) in control rats were 62 Hz. The rod driven CFF of RCD rats was 20 Hz; whereas the rod-/cone-driven CFF of CSNB rats both were about 25 Hz. Conclusions. The function of the rod system was damaged completely, the cones were the source of vision in CSNB rats. Rod system function is excellent in RCD rat. The rods of albinism rats are sensitive to frequencies less than 20 Hz; whereas the cones are sensitive to frequencies up to 62 Hz.