Table of Contents
ISRN Dermatology
Volume 2012, Article ID 352135, 4 pages
http://dx.doi.org/10.5402/2012/352135
Review Article

In Vitro Evaluation of Sunscreens: An Update for the Clinicians

1Institutes for Photonics and Nanotechnology, National Research Council, Via Trasea 7, 35131 Padua, Italy
2Dermatology Unit, University of Padua, Via Battisti 206, 35128 Padua, Italy

Received 2 October 2012; Accepted 30 October 2012

Academic Editors: E. Alpsoy, G. Chodorowska, F. Kaneko, E. Pasmatzi, and J. F. Val Bernal

Copyright © 2012 Maria Pelizzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Cadet, E. Sage, and T. Douki, “Ultraviolet radiation-mediated damage to cellular DNA,” Mutation Research, vol. 571, no. 1-2, pp. 3–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Marrot and J. R. Meunier, “Skin DNA photodamage and its biological consequences,” Journal of the American Academy of Dermatology, vol. 58, pp. S139–S148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, and T. Douki, “Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13765–13770, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. COLIPA/JCIA/CFTA-SA International Sun Protection Factor (SPF) test method. Brussels: COLIPA, 2006.
  5. Cosmetics_ Sun Protection test methods_ In vivo determination of the Sun Protection Factor (SPF) (ISO: 24444: 2010).
  6. F. P. Gasparro, B. Liao, P. J. Foley, X. M. Wang, and J. M. McNiff, “Psoralen photochemotherapy, clinical efficacy and photomutagenicity: the role of molecular epidemiology in minimizing risks,” Environmental and Molecular Mutagenesis, vol. 31, pp. 105–112, 1998. View at Google Scholar
  7. M. Stockdale, “A novel proposal for the assessment of sunscreen product efficacy against UVA,” International Journal of Cosmetic Science, vol. 9, no. 2, pp. 85–98, 1987. View at Google Scholar · View at Scopus
  8. G. Groves and P. Forbes, “A method for evaluating the photoprotective action of sunscreens against UV-A radiation,” International Journal of Cosmetic Science, vol. 4, pp. 15–24, 1982. View at Publisher · View at Google Scholar
  9. C. Cole, “Multicenter evaluation of sunscreen UVA protectiveness with the protection factor test method,” Journal of the American Academy of Dermatology, vol. 30, no. 5, pp. 729–736, 1994. View at Google Scholar · View at Scopus
  10. J. W. Stanfield, P. A. Feldt, E. S. Csortan, and L. Krochmal, “Ultraviolet A sunscreen evaluations in normal subjects,” Journal of the American Academy of Dermatology, vol. 20, no. 5, pp. 744–748, 1989. View at Google Scholar · View at Scopus
  11. R. Roelandts, N. Sohrabvand, and M. Garmyn, “Evaluating the UVA protection of sunscreens,” Journal of the American Academy of Dermatology, vol. 21, no. 1, pp. 56–62, 1989. View at Google Scholar · View at Scopus
  12. D. Moyal, K. Wichrowski, and C. Tricaud, “In vivo persistent pigment darkening method: a demonstration of the reproducibility of the UVA protection factors results at several testing laboratories,” Photodermatology Photoimmunology and Photomedicine, vol. 22, no. 3, pp. 124–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Gillies, D. Moyal, S. Forestier, and N. Kollias, “Non-invasive in vivo determination of UVA efficacy of sunscreens using diffuse reflectance spectroscopy,” Photodermatology Photoimmunology and Photomedicine, vol. 19, no. 4, pp. 190–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. L. Lott, J. Stanfield, R. M. Sayre, and J. C. Dowdy, “Uniformity of sunscreen product application: a problem in testing, a problem for consumers,” Photodermatology Photoimmunology and Photomedicine, vol. 19, no. 1, pp. 17–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. D. Pearse and C. Edwards, “Human stratum corneum as a substrate for in vitro sunscreen testing,” International Journal of Cosmetic Science, vol. 15, no. 6, pp. 234–244, 1993. View at Google Scholar · View at Scopus
  16. US Food and Drug Administration, “Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final rule, 21CRF Parts 201 and 310,” Federal Register, vol. 76, no. 117, pp. 35620–35665, 2011. View at Google Scholar · View at Scopus
  17. D. Moyal, A. Chardon, and N. Kollias, “Determination of UVA protection factors using the persistent pigment darkening (PPD) as the end point: (Part 1) calibration of the method,” Photodermatology Photoimmunology and Photomedicine, vol. 16, no. 6, pp. 245–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. European Commission Reccomandation, “On the efficacy of sunscreen products and the claims mode relating thereto,” Official Journal of the European Union, vol. 265, pp. 39–43, 2006. View at Google Scholar
  19. COLIPA, In vitro UV Protection Method Task Force. In vitro method for the in vitro determination of UVA protection factor and " critical wavelength" values of sunscreen products, 2011, http://www.colipa.com.
  20. Measurement of UVA: UVB Ratio According to the Boots Star Rating System (2008 Revision), Boots, Nottingham, UK, 2008.
  21. B. L. Diffey, “Pitfalls in the in vitro determination of sunscreen protection factors using broad band ultraviolet radiation detectors and solar simulating radiation,” International Journal of Cosmetic Science, vol. 11, no. 5, pp. 245–249, 1989. View at Google Scholar · View at Scopus
  22. H. Bendová, J. Akrman, A. Krejčí et al., “In vitro approaches to evaluation of Sun Protection Factor,” Toxicology in Vitro, vol. 21, no. 7, pp. 1268–1275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Akrman, L. Kubáč, H. Bendová, D. Jírová, and K. Kejlová, “Quartz plates for determining sun protection in vitro and testing photostability of commercial sunscreens,” International Journal of Cosmetic Science, vol. 31, no. 2, pp. 119–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D. Bleasel and S. Aldous, “In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique,” International Journal of Cosmetic Science, vol. 30, no. 4, pp. 259–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Shivani, G. Garima, G. Vipin, G. Satyam, and P. K. Sharma, “Sunscreen: an introductory review,” Journal of Pharmacy Research, vol. 3, no. 8, pp. 1857–1864, 2010. View at Google Scholar
  26. WandelV, E. Klette, and H. Gers-Barlag, “A new in vitro test method to assess the UVA protection performance of sun care products,” SÖFW Journal, vol. 127, no. 11, pp. 12–30, 2001. View at Google Scholar
  27. L. Ferrero, M. Pissavini, A. Dehais, S. Marguerie, and L. Zastrow, “Importance of substrate roughness for in vitro Sun Protection Assesment,” IFSCC Magazine, vol. 9, no. 2, 2006. View at Google Scholar
  28. D. Garoli, M. G. Pelizzo, B. Bernardini, P. Nicolosi, and M. Alaibac, “Sunscreen tests: correspondence between in vitro data and values reported by the manufacturers,” Journal of Dermatological Science, vol. 52, no. 3, pp. 193–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. U. S. Food and Drug Administration, “Sunscreen drug products for over-the-counter human use, proposed amendment of final monograph, proposed rule, 21CRF Parts 347 and 352,” Federal Register, vol. 72, pp. 49070–49122, 2007. View at Google Scholar