Table of Contents
ISRN Agronomy
Volume 2012, Article ID 356485, 8 pages
http://dx.doi.org/10.5402/2012/356485
Research Article

In Vitro Effects of Brassinosteroids on the Growth and Antioxidant Enzyme Activities in Groundnut

1School of Life Sciences, Jaipur National University, Jaipur 302025, India
2Department of Biochemistry, Kurukshetra University, Kurukshetra 136119, India

Received 11 August 2011; Accepted 14 September 2011

Academic Editors: H. Raman and D. S. Virk

Copyright © 2012 Aman Verma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Savage and J. I. Keenan, “The composition and nutritive value of Groundnut Kernels,” in The Groundnut Crop—A Scientific Basis for Improvement, J. Smartt, Ed., pp. 173–213, Chapman and Hall, London, UK, 1994. View at Google Scholar
  2. V. Khripach, V. Zhabinskii, and A. De Groot, “Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century,” Annals of Botany, vol. 86, no. 3, pp. 441–447, 2000. View at Publisher · View at Google Scholar
  3. L. L. Haubrick and S. M. Assmann, “Brassinosteroids and plant function: some clues, more puzzles,” Plant, Cell and Environment, vol. 29, no. 3, pp. 446–457, 2006. View at Publisher · View at Google Scholar
  4. S. Cao, Q. Xu, Y. Cao et al., “Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis,” Physiologia Plantarum, vol. 123, no. 1, pp. 57–66, 2005. View at Publisher · View at Google Scholar
  5. J. Q. Yu, L. F. Huang, W. H. Hu et al., “A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus,” Journal of Experimental Botany, vol. 55, no. 399, pp. 1135–1143, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. T. Montoya, T. Nomura, T. Yokota et al., “Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development,” Plant Journal, vol. 42, no. 2, pp. 262–269, 2005. View at Publisher · View at Google Scholar · View at PubMed
  7. P. Sharma and R. Bhardwaj, “Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress,” Acta Physiologiae Plantarum, vol. 29, no. 3, pp. 259–263, 2007. View at Publisher · View at Google Scholar
  8. P. Krishna, “Brassinosteroid-mediated stress responses,” Journal of Plant Growth Regulation, vol. 22, no. 4, pp. 289–297, 2003. View at Publisher · View at Google Scholar · View at PubMed
  9. M. B. Wachsman, J. A. Ramırez, L. B. Talarico, L. R. Galagovsky, and C. E. Coto, “Antiviral activity of natural and synthetic brassinosteroids,” Current Medicinal Chemistry, vol. 3, no. 2, pp. 163–179, 2004. View at Publisher · View at Google Scholar
  10. R. Bhardwaj, N. Arora, P. Sharma, and H. K. Arora, “Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L,” Asian Journal of Plant Sciences, vol. 6, no. 5, pp. 765–772, 2007. View at Google Scholar
  11. M. Nunez, P. Mazzafera, L. M. Mazorra, W. J. Siqueira, and M. A. Zullo, “Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culuture medium with NaCl,” Plant Biology, vol. 47, pp. 67–70, 2003. View at Google Scholar
  12. F. Özdemir, M. Bor, T. Demiral, and I. Turkan, “Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline concentration, and antioxidative system of rice under salinity stress,” Plant Growth Regulation, vol. 42, pp. 203–211, 2004. View at Google Scholar
  13. A. Verma, C. P. Malik, Y. K. Sinsinwar, and V. K. Gupta, “Yield parameters responses in a spreading (cv. M-13) and semi-spreading (cv. Girnar-2) types of groundnut to six growth regulators,” The American-Eurasian Journal of Agricultural Environmental Sciences, vol. 6, no. 1, pp. 88–91, 2009. View at Google Scholar
  14. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures,” Plant Physiology, vol. 15, pp. 473–497, 1962. View at Google Scholar
  15. J. Coombs, D. O. Hall, S. P. Long, and J. M. O. Scurlock, Techniques in Bioproductivity and Photosynthesis, Pergamon International, Oxford, UK, 2nd edition, 1985.
  16. J. H. Cherry, Molecular Biology of Plants—A Text Manual, Colombia University Press, New York, NY, USA, 1973.
  17. H. Aebi, “Catalase in vitro,” in Methods in Enzymology, L. Packer, Ed., vol. 105, pp. 121–126, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  18. Y. Z. Zhu, S. H. Huang, B. K. H. Tan, J. Sun, M. Whitman, and Y. C. Zhu, “Antioxidants in Chinese herbal medicines: a biochemical perspective,” Natural Product Reports, vol. 21, no. 4, pp. 478–489, 2004. View at Publisher · View at Google Scholar · View at PubMed
  19. M. Kar and D. Mishra, “Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence,” Plant Physiology, vol. 57, pp. 315–319, 1976. View at Google Scholar
  20. E. F. I. B. Moshaty, S. M. Pike, A. J. Novacky, and O. P. Sehgal, “Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus,” Physiological and Molecular Plant Pathology, vol. 43, no. 2, pp. 109–119, 1993. View at Publisher · View at Google Scholar
  21. K. M. Clegg, “Application of anthrone reagent to the estimation of starch in cereals,” Journal of the Science of Food & Agriculture, vol. 7, pp. 40–44, 1956. View at Google Scholar
  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin-phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar
  23. Y. Hu, F. Bao, and J. Li, “Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis,” Plant Journal, vol. 24, no. 5, pp. 693–701, 2000. View at Publisher · View at Google Scholar
  24. D. M. Zurek, D. L. Rayle, T. C. McMorris, and S. D. Clouse, “Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation,” Plant Physiology, vol. 104, no. 2, pp. 505–513, 1994. View at Google Scholar
  25. A. B. Pereira-Netto, M. M. C. Carvalho-Oliverirs, J. A. Ramirez, and L. R. Galagovsky, “Shooting control in Eucalyptus grandis x E. urophylla hybrid: comparative effects of 28-homocastasterone and a 5α-monofluoro derivatives,” Plant Cell, Tissue and Organ Culture, vol. 86, pp. 329–335, 2006. View at Google Scholar
  26. A. B. Pereira-Netto, C. T. A. Cruz-Silva, M. M. C. Schaefer, J. A. Ramirez, and L. R. Galagovsky, “Brassinosteroid- stimulated branch elongation in the Marubakaido apple rootatock,” Trees-Structure and Function, vol. 20, pp. 286–291, 2006. View at Google Scholar
  27. C. Müssig, G. H. Shin, and T. Altmann, “Brassinosteroids promote root growth in Arabidopsis,” Plant Physiology, vol. 133, no. 3, pp. 1261–1271, 2003. View at Publisher · View at Google Scholar · View at PubMed
  28. M. M. Alam, S. Hayat, B. Ali, and A. Ahmad, “Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea,” Photosynthetica, vol. 45, no. 1, pp. 139–142, 2007. View at Publisher · View at Google Scholar
  29. Q. Fariduddin, M. Yusuf, S. Hayat, and A. Ahmad, “Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper,” Environmental and Experimental Botany, vol. 66, no. 3, pp. 418–424, 2009. View at Publisher · View at Google Scholar
  30. I. M. Talaat and A. A. Youssef, “Response of rossele plants (Hibiscus sabderiffa L.) to some growth regulating substances,” Egyptian Journal of Physiological Sciences, vol. 22, pp. 327–338, 1998. View at Google Scholar
  31. G. Cevahir, S. Yentur, F. Eryilmaz, and N. Yilmazer, “Influence of brassinosteroids on pigment content of Glycine max L. (Soybean) grown in dark and light,” Journal of Applied Biological Sciences, vol. 2, no. 1, pp. 23–28, 2008. View at Google Scholar
  32. M. Farooq, A. Wahid, S. M. A. Basra, and Islam-Ud-Din, “Improving water relations and gas exchange with brassinosteroids in rice under drought stress,” Journal of Agronomy and Crop Science, vol. 195, no. 4, pp. 262–269, 2009. View at Publisher · View at Google Scholar
  33. R. K. Sairam, G. C. Srivastava, S. Agarwal, and R. C. Meena, “Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes,” Biologia Plantarum, vol. 49, no. 1, pp. 85–91, 2005. View at Publisher · View at Google Scholar
  34. M. Kočová, O. Rothová, D. Holá, M. Kvasnica, and L. Kohout, “The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid,” Biologia Plantarum, vol. 54, no. 4, pp. 785–788, 2010. View at Publisher · View at Google Scholar
  35. A. Bajguz, “Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris,” Plant Physiology and Biochemistry, vol. 38, no. 3, pp. 209–215, 2000. View at Publisher · View at Google Scholar
  36. Q. Fariduddin, A. Ahmed, and S. Hayat, “Response of Vigna radiata to foliar application of 28-homobrassinolide and Kinetin,” Journal of Plant Biology, vol. 48, pp. 465–468, 2004. View at Google Scholar
  37. B. V. Vardhini and S. S. R. Rao, “Effect of brassinosteroids on the activities of certain oxidizing and hydrolyzing enzymes of groundnut,” The Indian Journal of Plant Physiology, vol. 5, no. 1, pp. 89–92, 2000. View at Google Scholar
  38. N. Arora, R. Bhardwaj, P. Sharma, H. K. Arora, and P. Arora, “Amelioration of zinc toxicity by 28-homobrassinolide in Zea mays L,” The Canadian Journal of Pure and Applied Sciences, vol. 2, no. 3, pp. 503–509, 2008. View at Google Scholar
  39. M. Behnamnia, K. M. Kalantari, and F. Rezanejad, “Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum,” General and Applied Plant Physiology, vol. 35, no. 1-2, pp. 22–34, 2009. View at Google Scholar
  40. P. Arora, R. Bhardwaj, and M. K. Kanwar, “24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress,” Physiology and Molecular Biology of Plants, vol. 16, no. 3, pp. 285–293, 2010. View at Publisher · View at Google Scholar
  41. G. Sirhindi, S. Kumar, R. Bhardwaj, and M. Kumar, “Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L,” Physiology and Molecular Biology of Plants, vol. 15, no. 4, pp. 335–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. V. Vardhini and S. S. R. Rao, “Effect of 28-homobrassinolide on growth, metabolite content and yield of groundnut (Arachis hypogaea. L),” The Indian Journal of Plant Physiology, vol. 13, pp. 58–60, 1998. View at Google Scholar
  43. B. V. Vardhini and S. S. Ram Rao, “Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea,” Phytochemistry, vol. 48, no. 6, pp. 927–930, 1998. View at Publisher · View at Google Scholar
  44. P. Sharma, R. Bhardwaj, N. Arora, and H. K. Arora, “Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings,” Brazilian Journal of Plant Physiology, vol. 19, no. 3, pp. 203–210, 2007. View at Publisher · View at Google Scholar
  45. L. M. Mazorra, M. Nunez, M. Hechavarria, F. Coll, and M. J. Sanchez- Blanco, “Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures,” Plant Biology, vol. 45, pp. 593–596, 2002. View at Google Scholar
  46. G. Kartal, A. Temel, E. Arican, and N. Gozukirmizi, “Effects of brassinosteroids on barley root growth, antioxidant system and cell division,” Plant Growth Regulation, vol. 58, no. 3, pp. 261–267, 2009. View at Publisher · View at Google Scholar
  47. B. V. Vardhini and S. S. R. Rao, “Acceleration of ripening of tomato pericarp discs by brassinosteroids,” Phytochemistry, vol. 61, no. 7, pp. 843–847, 2002. View at Publisher · View at Google Scholar
  48. C. Y. Wu, A. Trieu, P. Radhakrishnan et al., “Brassinosteroids regulate grain filling in rice,” Plant Cell, vol. 20, no. 8, pp. 2130–2145, 2008. View at Publisher · View at Google Scholar · View at PubMed
  49. J. F. Kalinich, N. B. Mandava, and J. A. Todhunter, “Relationship of nucleic acid metabolism to brassinolide induced responses in beans,” Journal of Plant Physiology, vol. 120, pp. 207–214, 1985. View at Google Scholar
  50. S. Anuradha and S. S. R. Rao, “Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity,” Plant Growth Regulation, vol. 40, no. 1, pp. 29–32, 2003. View at Publisher · View at Google Scholar
  51. M. Shahbaz, M. Ashraf, and H. U. R. Athar, “Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)?” Plant Growth Regulation, vol. 55, no. 1, pp. 51–64, 2008. View at Publisher · View at Google Scholar