Table of Contents
ISRN Meteorology
Volume 2012 (2012), Article ID 357925, 14 pages
http://dx.doi.org/10.5402/2012/357925
Research Article

The Near-Surface Small-Scale Spatial and Temporal Variability of Sensible and Latent Heat Exchange in the Svalbard Region: A Case Study

1Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
2Institute of Meteorology and Geophysics, Innsbruck University, Innrain 52, A-6020 Innsbruck, Austria
3University of Bergen, Allegaten 70, N-5007 Bergen, Germany
4University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany

Received 11 May 2012; Accepted 10 June 2012

Academic Editors: D. Bourras and A. Saha

Copyright © 2012 Georg Jocher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tjernström, M. Žagar, G. Svensson et al., “Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project,” Boundary-Layer Meteorology, vol. 117, no. 2, pp. 337–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lüers and J. Bareiss, “Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry-the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006),” Theoretical and Applied Climatology, vol. 105, no. 3-4, pp. 387–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Westermann, J. Lüers, M. Langer, K. Piel, and J. Boike, “The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway,” Cryosphere, vol. 3, no. 2, pp. 245–263, 2009. View at Google Scholar · View at Scopus
  4. S. Basu, F. Porté-agel, E. Foufoula-Georgiou, J. F. Vinuesa, and M. Pahlow, “Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations,” Boundary-Layer Meteorology, vol. 119, no. 3, pp. 473–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Westermann, Sensitivity of permafrost [M.S. dissertation], University of Heidelberg, 2010.
  6. K. Papadopoulos, The summer climate of kongsvegen glacier [M.S. thesis], Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 2010.
  7. H. J. Beine, S. Argentini, A. Maurizi, G. Mastrantonio, and A. Viola, “The local wind field at Ny-Ålesund and the Zeppelin mountain at svalbard,” Meteorology and Atmospheric Physics, vol. 78, no. 1-2, pp. 107–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Argentini, A. P. Viola, G. Mastrantonio, A. Maurizi, T. Georgiadis, and M. Nardino, “Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment,” Annali di Geofisica, vol. 46, no. 2, pp. 185–196, 2003. View at Google Scholar · View at Scopus
  9. T. Vihma, T. Kilpeläinen, M. Manninen et al., “Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring,” Advances in Meteorology, vol. 2011, Article ID 486807, 14 pages, 2011. View at Publisher · View at Google Scholar
  10. V. Vitale and R. Udisti, “Climate Change Tower Integrated Project (CCT-IP) A scientific platform to investigate processes at the surface and in the low troposphere,” Geophysical Research Abstracts, vol. 12, EGU2010-10876-1, 2010. View at Google Scholar
  11. M. Mauder and T. Foken, Documentation and Instruction Manual of the Eddy Covariance Software Package TK3, vol. 46 of Arbeitsergebnisse Universität Bayreuth, Abteilung Mikrometeorologie, 2011.
  12. M. Mauder, T. Foken, R. Clement et al., “Quality control of CarboEurope flux data—part 2: inter-comparison of eddy-covariance software,” Biogeosciences, vol. 5, no. 2, pp. 451–462, 2008. View at Google Scholar · View at Scopus
  13. T. Foken, M. Aubinet, and R. Leuning, “The eddy-covariance method,” in Eddy Covariance: A Practical Guide to Measurement and Data Analysis, M. Aubinet, T. Vesala, and D. Papale, Eds., pp. 1–19, Springer, Dordrecht, Heidelberg, 2012. View at Google Scholar
  14. T. Foken, M. Göckede, M. Mauder, L. Mahrt, B. D. Amiro, and W. J. Munger, “Post-field data quality control,” in Handbook of Micrometeorology: A Guide for Surface Flux Measurements and Analysis, X. Lee, W. J. Massmann, and B. Law, Eds., pp. 181–208, Kluwer, Dordrecht, The Netherlands, 2004. View at Google Scholar
  15. T. Foken, R. Leuning, S. P. Oncley, M. Mauder, and M. Aubinet, “Corrections and data quality,” in Eddy Covariance: A Practical Guide to Measurement and Data Analysis, M. Aubinet, T. Vesala, and D. Papale, Eds., pp. 85–131, Springer, Dordrecht, The Netherlands, 2012. View at Google Scholar
  16. P. Skeie and S. Gronas, “Strongly stratified easterly flows across Spitsbergen,” Tellus A, vol. 52, no. 5, pp. 473–486, 2000. View at Google Scholar · View at Scopus
  17. A. D. Sandvik and B. R. Furevik, “Case study of a coastal jet at Spitsbergen—comparison of SAR- and model-estimated wind,” Monthly Weather Review, vol. 130, no. 4, pp. 1040–1051, 2002. View at Google Scholar · View at Scopus
  18. H. Svendsen, A. Beszczynska-Møller, J. O. Hagen et al., “The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard,” Polar Research, vol. 21, no. 1, pp. 133–166, 2002. View at Google Scholar · View at Scopus
  19. S. Argentini, A. Viola, G. Mastrantonio, G. Maurizi, T. Giorgiadis, and M. Nardino, “Dynamics of the atmospheric boundary layer at Ny-Ålesund,” in Proceedings of the 8th Workshop Italian Research on Antarctic Atmosphere. Societa Italiana di Fisica Conference, G. Giovanelli and M. Colacino, Eds., vol. 69, pp. 175–185, Italian Physical Society, 2000.
  20. J. Hartmann, F. Albers, S. Argentini et al., “Arctic Radiation and Turbulence Interaction Study (ARTIST),” Report on Polar Research 305, Alfred-Wegener-Institute for Polar-und Meeresforschung, Bremerhaven, Germany, 1999. View at Google Scholar
  21. H. Sodemann and T. Foken, “Special characteristics of the temperature structure near the surface,” Theoretical and Applied Climatology, vol. 80, no. 2–4, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Lüers and J. Bareiss, “The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006),” Atmospheric Chemistry and Physics, vol. 10, no. 1, pp. 157–168, 2010. View at Google Scholar
  23. S. Zilitinkevich and P. Calanca, “An extended similarity theory for the stably stratified atmospheric surface layer,” Quarterly Journal of the Royal Meteorological Society, vol. 126, no. 566, pp. 1913–1923, 2000. View at Google Scholar · View at Scopus
  24. R. B. Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic, Dodrecht, The Netherlands, 1988.
  25. J. Egger, C. Wamser, and C. Kottmeier, “Internal atmospheric gravity waves near the coast of Antarctica,” Boundary-Layer Meteorology, vol. 66, no. 1-2, pp. 1–17, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. Zilitinkevich, “Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer,” Quarterly Journal of the Royal Meteorological Society, vol. 128, no. 581, pp. 913–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. O. Jonassen, H. Olafsson, J. Reuder, and A. J. Olseth, “Multi-scale variability of winds in the complex topography of southwestern, Norway,” Tellus A, vol. 64, Article ID 11962, 2012. View at Publisher · View at Google Scholar
  28. T. Foken and B. Wichura, “Tools for quality assessment of surface-based flux measurements,” Agricultural and Forest Meteorology, vol. 78, no. 1-2, pp. 83–105, 1996. View at Google Scholar · View at Scopus
  29. G. Heinz, D. Handorf, and D. Foken, “Strukturanalyse der atmosphärischen Turbulenz mittels Wavelet-Verfahren zur Bestimmung von Austauschprozessen über dem antarktischen Schelfeis, Arbeitsergebnisse Universität Bayreuth, Abteilung Mikrometeorologie,” 1999.
  30. C. Gromke, C. Manes, B. Walter, M. Lehning, and M. Guala, “Aerodynamic roughness length of fresh snow,” Boundary-Layer Meteorology, vol. 141, no. 1, pp. 21–34, 2011. View at Publisher · View at Google Scholar · View at Scopus