Table of Contents
ISRN Chemical Engineering
Volume 2012 (2012), Article ID 372479, 11 pages
http://dx.doi.org/10.5402/2012/372479
Research Article

Photocatalytic Reaction of Gas-Phase Naphthalene on Paint- and Sunscreen-Coated Surfaces

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

Received 15 June 2012; Accepted 12 August 2012

Academic Editors: H. Idriss and E. Van Steen

Copyright © 2012 Nicholas A. Ashley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Dionysiou, “Environmental applications and implications of nanotechnology and nanomaterials,” Journal of Environmental Engineering, vol. 130, no. 7, pp. 723–724, 2004. View at Publisher · View at Google Scholar
  2. P. Biswas and C. Y. Wu, “Nanoparticles and the environment,” Journal of the Air and Waste Management Association, vol. 55, no. 6, pp. 708–746, 2005. View at Google Scholar · View at Scopus
  3. K. A. D. Guzmán, M. R. Taylor, and J. F. Banfield, “Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004,” Environmental Science and Technology, vol. 40, no. 5, pp. 1401–1407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas, “Assessing the risks of manufactured nanomaterials,” Environmental Science and Technology, vol. 40, no. 14, pp. 4336–4345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. V. Vorontsov, E. N. Savinov, G. B. Barannik, V. N. Troitsky, and V. N. Parmon, “Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2,” Catalysis Today, vol. 39, no. 3, pp. 207–218, 1997. View at Google Scholar · View at Scopus
  6. J. N. Wilson and H. Idriss, “Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid,” Journal of Catalysis, vol. 214, no. 1, pp. 46–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yu, K. Zhang, and C. Rossi, “Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst,” Journal of Photochemistry and Photobiology A, vol. 188, no. 1, pp. 65–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ohko, A. Fujishima, and K. Hashimoto, “Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst,” Journal of Physical Chemistry B, vol. 102, no. 10, pp. 1724–1729, 1998. View at Google Scholar · View at Scopus
  9. N. S. Allen, M. Edge, G. Sandoval, J. Verran, J. Stratton, and J. Maltby, “Photocatalytic coatings for environmental applications,” Photochemistry and Photobiology, vol. 81, no. 2, pp. 279–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Salthammer and F. Fuhrmann, “Photocatalytic surface reactions on indoor wall paint,” Environmental Science and Technology, vol. 41, no. 18, pp. 6573–6578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. J. McConkey, L. M. Hewitt, D. G. Dixon, and B. M. Greenberg, “Natural sunlight induced photooxidation of naphthalene in aqueous solution,” Water, Air, and Soil Pollution, vol. 136, no. 1–4, pp. 347–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: molecular composition,” Environmental Science and Technology, vol. 31, no. 5, pp. 1345–1358, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Vileno, M. Lekka, A. Sienkiewicz et al., “Stiffness alterations of single cells induced by UV in the presence of NanoTiO2,” Environmental Science and Technology, vol. 41, no. 14, pp. 5149–5153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Brunner, P. Wick, P. Manser et al., “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environmental Science and Technology, vol. 40, no. 14, pp. 4374–4381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Wedin, “Is nanotechnology safe?” Chemistry, pp. 48–50, 2006. View at Google Scholar
  17. T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry, and B. Veronesi, “Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity,” Environmental Science and Technology, vol. 40, no. 14, pp. 4346–4352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. R. Chianelli, M. J. Yacaman, J. Arenas, and F. Aldape, “Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants,” Journal of Hazardous Materials, vol. 1, no. 1, pp. 1–16, 1998. View at Google Scholar
  19. K. Donaldson, V. Stone, A. Clouter, L. Renwick, and W. MacNee, “Ultrafine particles,” Occupational and Environmental Medicine, vol. 58, no. 3, pp. 211–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Rothen-Rutishauser, S. Schürch, B. Haenni, N. Kapp, and P. Gehr, “Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques,” Environmental Science and Technology, vol. 40, no. 14, pp. 4353–4359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. N. A. Ashley, Particle-chemical interactions and environmental chemodynamics of fine and ultrafine particles in a natural disaster scenario [Ph.D. thesis], Louisiana State University, Baton Rouge, La, USA, 2009.
  22. A. Gratzfeld-Husgen, R. Schuster, and H. Schulenberg-Schell, Polynuclear Aromatic Hydrocarbons by HPLC, Agilent Technologies, Waldbronn, Germany, 1993.
  23. A. Gratzfeld-Husgen and R. Schuster, Improved Data Quality in the Automated HPLC Analysis of PNAs (PAHs), Agilent Technologies, Waldbrom, Germany, 1995.
  24. J. H. Braun, A. Baidins, and R. E. Marganski, “TiO2 pigment technology: a review,” Progress in Organic Coatings, vol. 20, no. 2, pp. 105–138, 1992. View at Google Scholar · View at Scopus
  25. P. A. Christensen, A. Dilks, T. A. Egerton, E. J. Lawson, and J. Temperley, “Photocatalytic oxidation of alkyd paint films measured by FTIR analysis of UV generated carbon dioxide,” Journal of Materials Science, vol. 37, no. 22, pp. 4901–4909, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. N. C. Debnath and S. A. Vaidya, “Application of X-ray diffraction technique for characterisation of pigments and control of paints quality,” Progress in Organic Coatings, vol. 56, no. 2-3, pp. 159–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Kakinoki, K. Yamane, R. Teraoka, M. Otsuka, and Y. Matsuda, “Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine,” Journal of Pharmaceutical Sciences, vol. 93, no. 3, pp. 582–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. L. Linsebigler, G. Lu Jr, and J. T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus
  29. C.-Y. Wang, H. Groenzin, and M. J. Shultz, “Surface characterization of nanoscale TiO2 film by sum frequency generation using methanol as a molecular probe,” Journal of Physical Chemistry B, vol. 108, no. 1, pp. 265–272, 2004. View at Google Scholar · View at Scopus
  30. M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, vol. 93, no. 1, pp. 341–357, 1993. View at Google Scholar · View at Scopus
  31. Y.-H. Zhang, C. K. Chan, J. F. Porter, and W. Guo, “Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis,” Journal of Materials Research, vol. 13, no. 9, pp. 2602–2609, 1998. View at Google Scholar · View at Scopus
  32. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  33. Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou, “Low temperature synthesis and photocatalytic activity of rutile TiO 2 nanorod superstructutes,” Journal of Physical Chemistry C, vol. 111, no. 6, pp. 2709–2714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. P. Diebold, C. R. Bettler, and D. M. Mukoda, “Mechanism of TiO2/ZnO instability in latex paints,” Journal of Coatings Technology, vol. 75, no. 942, pp. 29–8, 2003. View at Google Scholar · View at Scopus
  35. S. H. Joo, S. R. Al-Abed, and T. Luxton, “Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands,” Environmental Science and Technology, vol. 43, no. 13, pp. 4954–4959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. W. Missen, C. A. Mims, and B. A. Saville, Introduction to Chemical Reaction Engineering and Kinetics, John Wiley & Sons, New York, 1999.
  37. C.-Y. Wang, R. Pagel, D. W. Bahnemann, and J. K. Dohrmann, “Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation,” Journal of Physical Chemistry B, vol. 108, no. 37, pp. 14082–14092, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, New York, NY, USA, 3rd edition, 1999.
  39. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, New York, NY, USA, 3rd edition, 1999.
  40. K. I. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water,” Journal of Physical Chemistry B, vol. 104, no. 20, pp. 4934–4938, 2000. View at Google Scholar · View at Scopus
  41. K. I. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, “Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air,” Journal of Physical Chemistry B, vol. 102, no. 12, 1998. View at Google Scholar · View at Scopus
  42. A. Fujishima, T. N. Rao, and D. A. Tyrk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C, vol. 1, no. 1, pp. 1–21, 2000. View at Publisher · View at Google Scholar
  43. M. Anpo, T. Shima, and Y. Kubokawa, “ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles,” Chemistry Letters, vol. 14, no. 12, pp. 1799–1802, 1985. View at Google Scholar
  44. N. S. Allen, M. Edge, J. Verran, J. Stratton, J. Maltby, and C. Bygott, “Photocatalytic titania based surfaces: environmental benefits,” Polymer Degradation and Stability, vol. 93, no. 9, pp. 1632–1646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Q. Jin, P. A. Christensen, T. A. Egerton, and J. R. White, “Rapid measurement of photocatalytic oxidation of poly(vinyl chloride) by in situ FTIR spectrometry of evolved CO2,” Materials Science and Technology, vol. 22, no. 8, pp. 908–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Jin, P. A. Christensen, T. A. Egerton, E. J. Lawson, and J. R. White, “Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide,” Polymer Degradation and Stability, vol. 91, no. 5, pp. 1086–1096, 2006. View at Publisher · View at Google Scholar · View at Scopus