Table of Contents
ISRN Corrosion
Volume 2012 (2012), Article ID 379697, 10 pages
http://dx.doi.org/10.5402/2012/379697
Research Article

Chemical Stability of Chromium Carbide and Chromium Nitride Powders Compared with Chromium Metal in Synthetic Biological Solutions

Division of Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Drottning Kristinas väg 51, 100 44 Stockholm, Sweden

Received 7 March 2012; Accepted 6 May 2012

Academic Editors: K. N. Allahar, L. Bazzi, and R. Wang

Copyright © 2012 Tao Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Hedberg, K. Midander, and I. O. Wallinder, “Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact,” Integrated Environmental Assessment and Management, vol. 6, no. 3, pp. 456–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Midander, A. D. Frutos, Y. Hedberg, G. Darrie, and I. O. Wallinder, “Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel,” Integrated Environmental Assessment and Management, vol. 6, no. 3, pp. 441–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Huvinen, A. Mäkitie, H. Järventaus et al., “Nasal cell micronuclei, cytology and clinical symptoms in stainless steel production workers exposed to chromium,” Mutagenesis, vol. 17, no. 5, pp. 425–429, 2002. View at Google Scholar · View at Scopus
  4. M. Huvinen, J. Uitti, P. Oksa, P. Palmroos, and P. Laippala, “Respiratory health effects of long-term exposure to different chromium species in stainless steel production,” Occupational Medicine, vol. 52, no. 4, pp. 203–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Hultquist, M. Seo, T. Leitner, C. Leygraf, and N. Sato, “The dissolution behaviour of iron, chromium, molybdenum and copper from pure metals and from ferritic stainless steels,” Corrosion Science, vol. 27, no. 9, pp. 937–946, 1987. View at Google Scholar · View at Scopus
  6. H. Y. Park and T. R. Shearer, “In vitro release of nickel and chromium from simulated orthodontic appliances,” American Journal of Orthodontics, vol. 84, no. 2, pp. 156–159, 1983. View at Google Scholar · View at Scopus
  7. Y. Hedberg, J. Hedberg, Y. Liu, and I. O. Wallinder, “Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure,” BioMetals, pp. 1099–1114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Hedberg and I. O. Wallinder, “Transformation/dissolution studies on the release of iron and chromium from particles of alloys compared with their pure metals and selected metal oxides,” Materials and Corrosion, vol. 62, no. 9999, 2011. View at Google Scholar
  9. V. Riihimäki and M. Luotamo, Health Risk Assessment Report for Metallic Chromium and Trivalent Chromium, International Chromium Development Association, 2006.
  10. A. Broadway, M. R. Cave, J. Wragg et al., “Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment,” Science of the Total Environment, vol. 409, no. 2, pp. 267–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. X. Wang, J. Q. Chen, L. Y. Chai, Z. H. Yang, S. H. Huang, and Y. Zheng, “Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China,” Journal of Hazardous Materials, vol. 190, no. 1–3, pp. 980–985, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. V. N. Klimenko, “The strength of chromium carbide hard alloys,” Soviet Powder Metallurgy and Metal Ceramics, vol. 3, no. 5, pp. 396–399, 1965. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Lyutaya and O. P. Kulik, “Chemical properties of nitrides of some transition metals,” Soviet Powder Metallurgy and Metal Ceramics, vol. 9, no. 10, pp. 821–826, 1970. View at Publisher · View at Google Scholar · View at Scopus
  14. C. K. Lee, “Electrochemical behaviour of chromium nitride coatings with various preferred orientations deposited on steel by unbalanced magnetron sputtering,” Materials Science and Technology, vol. 22, no. 6, pp. 653–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Cai, X. Huang, Q. Yang, R. Wei, and D. Nagy, “Microstructure and tribological properties of CrN and CrSiCN coatings,” Surface and Coatings Technology, vol. 205, no. 1, pp. 182–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Engel, G. Schwarz, and G. K. Wolf, “Corrosion and mechanical studies of chromium nitride films prepared by ion-beam-assisted deposition,” Surface and Coatings Technology, vol. 98, no. 1–3, pp. 1002–1007, 1998. View at Google Scholar · View at Scopus
  17. Y. Ishikawa, S. Kuroda, J. Kawakita, Y. Sakamoto, and M. Takaya, “Sliding wear properties of HVOF sprayed WC-20%Cr3C2–7%Ni cermet coatings,” Surface and Coatings Technology, vol. 201, no. 8, pp. 4718–4727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. F. A. Jargelius-Pettersson, “Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels,” Corrosion Science, vol. 41, no. 8, pp. 1639–1664, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Taguchi and J. Kurihara, “Effect of surface nitriding on corrosion resistance of chromium in sulfuric acid solution,” Materials Transactions, vol. 32, no. 12, pp. 1170–1176, 1991. View at Google Scholar · View at Scopus
  20. O. S. Yurchenko, V. M. Knyazheva, Y. P. Kolosvetov, S. G. Babich, and V. B. Kozhevnikov, “Corrosion and electrochemical properties of hot-pressed chromium nitride,” Soviet Powder Metallurgy and Metal Ceramics, vol. 26, no. 5, pp. 388–391, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Aouadi, D. M. Mihut, M. L. Kuruppu, S. R. Kirkpatrick, and S. L. Rohde, “Spectroscopic ellipsometry measurements of chromium nitride coatings,” Journal of Vacuum Science and Technology, Part A, vol. 19, no. 6, pp. 2800–2804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, “X-ray photoelectron spectroscopy studies of chromium compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1550–1563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Detroye, F. Reniers, C. Buess-Herman, and J. Vereecken, “AES-XPS study of chromium carbides and chromium iron carbides,” Applied Surface Science, vol. 144-145, no. 1–4, pp. 78–82, 1999. View at Google Scholar · View at Scopus
  24. A. Lippitz and T. Hübert, “XPS investigations of chromium nitride thin films,” Surface and Coatings Technology, vol. 200, no. 1–4, pp. 250–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Han, J. Tian, Q. Lai, X. Yu, and G. Li, “Effect of N2 partial pressure on the microstructure and mechanical properties of magnetron sputtered CrNx films,” Surface and Coatings Technology, vol. 162, no. 2-3, pp. 189–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. C. Hamel, B. Buckley, and P. J. Lioy, “Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid,” Environmental Science and Technology, vol. 32, no. 3, pp. 358–362, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. ASTM, “Standard test method for determining extractability of metals from art materials,” Annual Book of ASTM Standards, 2003. View at Google Scholar
  28. W. Stopford, J. Turner, D. Cappellini, and T. Brock, “Bioaccessibility testing of cobalt compounds,” Journal of Environmental Monitoring, vol. 5, no. 4, pp. 675–680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. “Reference test method for release of nickel from products intended to come into direct and prolonged contact with the skin,” European Standard, EN1811, 1998.
  30. A. De Meringo, C. Morscheidt, S. Thelohan, and H. Tiesler, “In vitro assessment of biodurability: acellular systems,” Environmental Health Perspectives, vol. 102, no. 5, pp. 47–53, 1994. View at Google Scholar · View at Scopus
  31. A. Norlin, J. Pan, and C. Leygraf, “Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy,” Biomolecular Engineering, vol. 19, no. 2–6, pp. 67–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Sankaran, P. K. Ajilumar, M. Kamruddin et al., “Gas phase nitridation of chromium plated stainless steel,” in Proceedings of the International Symposium of Research Students on Material Science and Engineering, 2004.
  33. J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surface and Coatings Technology, vol. 202, no. 14, pp. 3272–3283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Stefanov, D. Stoychev, M. Stoycheva, and T. Marinova, “XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L,” Materials Chemistry and Physics, vol. 65, no. 2, pp. 212–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Čekada, P. Panjan, M. Maček, and P. Šmíd, “Comparison of structural and chemical properties of Cr-based hard coatings,” Surface and Coatings Technology, vol. 151-152, pp. 31–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Maury, D. Oquab, J. C. Manse, R. Morancho, J. F. Nowak, and J. P. Gauthier, “Structural characterization of chromium carbide coatings deposited at low temperature by low pressure chemical vapour decomposition using dicumene chromium,” Surface and Coatings Technology, vol. 41, no. 1, pp. 51–61, 1990. View at Google Scholar · View at Scopus
  37. G. Herting, I. Odnevall Wallinder, and C. Leygraf, “A comparison of release rates of Cr, Ni, and Fe from stainless steel alloys and the pure metals exposed to simulated rain events,” Journal of the Electrochemical Society, vol. 152, no. 1, pp. B23–B29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Hedberg, J. Gustafsson, H. L. Karlsson, L. Möller, and I. O. Wallinder, “Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective,” Particle and Fibre Toxicology, vol. 7, article no. 23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Music, U. Kreissig, R. Mertens, and J. M. Schneider, “Electronic structure and mechanical properties of Cr7C3,” Physics Letters, Section A, vol. 326, no. 5-6, pp. 473–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. K. E. Burke, “Chemical extraction of refractory inclusions from iron- and nickel-base alloys,” Metallography, vol. 8, no. 6, pp. 473–488, 1975. View at Google Scholar · View at Scopus
  41. R. F. Carbonaro, B. N. Gray, C. F. Whitehead, and A. T. Stone, “Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: adsorption and dissolution,” Geochimica et Cosmochimica Acta, vol. 72, no. 13, pp. 3241–3257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Zhang, N. Kallay, and E. Matijević, “Interactions of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems,” Langmuir, vol. 1, no. 2, pp. 201–206, 1985. View at Google Scholar · View at Scopus