Table of Contents
ISRN Electronics
Volume 2012, Article ID 382560, 5 pages
http://dx.doi.org/10.5402/2012/382560
Research Article

Electronically Controllable Explicit Current Output Sinusoidal Oscillator Employing Single VDTA

Department of Electronics & Communication Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India

Received 27 July 2012; Accepted 16 August 2012

Academic Editors: S. Gift, M. Liao, and L. Martiradonna

Copyright © 2012 Dinesh Prasad and D. R. Bhaskar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A new current-mode sinusoidal oscillator employing a single voltage differencing transconductance amplifier (VDTA), two grounded capacitors, and one grounded resistor has been proposed. The proposed sinusoidal oscillator offers the following advantageous features: (i) use of grounded capacitors which are attractive from the view point of IC implementation as well as eliminating/accommodating parasitic capacitances, (ii) independent control of frequency of oscillation and condition of oscillation, (iii) ready availability of explicit current-mode output, (iv) low active and passive sensitivities, and (v) a very good frequency stability. The workability of the proposed configuration has been established by PSPICE simulations.

1. Introduction

In the synthesis of signal processing/signal generation circuits, current-mode (CM) operation has received much attention over the conventional voltage-mode (VM) operation due to its wider bandwidth and high linearity [1]. There is a growing interest in the realization of sinusoidal oscillators with explicit CM output because these oscillators may be employed as test signal generators for the testing of CM filters, CM precision rectifier, and so forth, which would otherwise require additional voltage to current converter when tested by using conventional VM oscillators [2]. Sinusoidal oscillators find numerous applications in communication, control systems, signal processing, instrumentation, and measurement systems; see [35] and the references cited therein. Explicit current-mode sinusoidal oscillators (ECMSOs) based upon different active single building blocks are available in the literature; see [613] and the references cited therein.

In [14], many active building blocks have been introduced, VDTA is one of them. Although a CMOS realization of VDTA and its RF filter application has been introduced in [15], to the best knowledge and belief of the authors no other application has been reported in the open literature so far. Therefore, the purpose of this paper is to propose a new ECMSO using a single VDTA along with three passive components (two grounded capacitors and one grounded resistor), which offers (i) use of grounded capacitors which are attractive from the viewpoint of IC implementation as well as eliminating/accommodating parasitic capacitances, (ii) independent control of frequency of oscillation and condition of oscillation (iii) ready availability of explicit current-mode output, (iv) low active and passive sensitivities, and (v) a very good frequency stability. Apart from realizing the intended type of ECMSO, the proposed topology has other modes of operation also. The workability of the new circuit has been verified by PSPICE simulations.

2. The New Oscillator Configuration

The symbolic notation of the VDTA is shown in Figure 1, where and are input terminals and , , and are the output terminals. All terminals of VDTA exhibit high impedance values [15]. The VDTA can be described by the following set of equations: A routine circuit analysis yields the following characteristic equation: Thus, the condition of oscillation (CO) and frequency of oscillation (FO) are given by Therefore, it is seen that CO can independently be controlled by resistor while FO is electronically controllable by transconductance .

382560.fig.001
Figure 1: The symbolic notation of VDTA.

With the feedback link broken at node “” and considering the terminal of VDTA as the input, the two open loop transfer functions realized by the proposed circuit are given by Thus, in this mode, the same configuration can be used to realize low-pass and band-pass filters simultaneously. From (4), the natural frequency () and bandwidth (BW) are given by Thus, it is seen that and BW are independently tunable.

In the third mode of operation, the current transfer functions obtained from Figure 2 are given by For sinusoidal steady state, (6) becomes Thus, the phase difference between ( and ) is and between ( and ), and ( and ) is .

382560.fig.002
Figure 2: The proposed configuration.

Hence, the currents ( and ), ( and ) and ( and ) are in the quadrature form. To extract the currents , and explicitly another device with their inputs virtually grounded will be required due to which although the capacitors , and resistor will not be physically connected to ground but they will still be virtually grounded [16].

3. Nonideal Analysis

It is useful to count the effect of various VDTA nonideal parameters on the CO and FO of the proposed oscillator. Taking into account the finite -terminal parasitic impedance consisting of a resistance in parallel with capacitance , the finite -terminal parasitic impedance consisting of a resistance in parallel with capacitance , the finite -terminal parasitic impedance consisting of a resistance in parallel with capacitance and the parasitic impedance at the -terminal consisting of a resistance in parallel with capacitance , then the non-ideal expression of CO and FO can be given by where denotes , then, the active and passive sensitivities of can be found as From the above mentioned sensitivity values, it is easy to figure out that all the active and passive sensitivities are no more than half in magnitude.

4. Frequency Stability

Using the definition of the frequency stability factor as given in [5], (where is the normalized frequency and represents the phase of the open-loop transfer function of the oscillator circuit), with , , and ; the of the proposed oscillator is found to be . Therefore, very good frequency stability is obtainable by selecting larger value of .

5. Simulation Results

To confirm theoretical analysis, the proposed ECMSO was simulated using CMOS VDTA from [15]. Power supply voltages were taken as  V and μA biasing currents are used. The transistor aspect ratios are taken from [15]. The passive elements of the configuration were selected as  nF and  k. The transconductances of VDTA were controlled by bias currents. PSPICE generated output waveforms indicating transient and steady-state responses are shown in Figures 3(a) and 3(b), respectively. These results, thus, confirm the validity of the proposed configuration. The total harmonic distortion (THD) of the proposed oscillator is found to be 2.66% (Figure 4). A comparison with other previously known ECMSOs using single active building block has been given in Table 1. Figure 5 shows the frequency responses of the BP and LP filters obtained from the proposed configuration. From Figures 6, 7, and 8, it is clear that the two currents are in quadrature.

tab1
Table 1
fig3
Figure 3: (a) Transient output waveform. (b) Steady-state response of the output.
382560.fig.004
Figure 4: Simulation result of the output spectrum.
382560.fig.005
Figure 5: Frequency response of LP and BP filters.
382560.fig.006
Figure 6: Steady-state response of the quadrature outputs of and .
382560.fig.007
Figure 7: Steady-state response of the quadrature outputs of and .
382560.fig.008
Figure 8: Steady-state response of the quadrature outputs of and .

As a sample example, Figure 8 shows that the two currents are in quadrature and the measured value of phase shift between two waveforms is .

6. Concluding Remarks

A new application of VDTA has been introduced in the realization of a novel ECMSO. In oscillator mode, the circuit offers (i) independent control of frequency of oscillation and condition of oscillation, (ii) use of grounded capacitors which are attractive from the viewpoint of IC implementation as well as eliminating/accommodating parasitic capacitances, (iii) ready availability of explicit current-mode output, (iv) low active and passive sensitivities, and (v) a very good frequency stability. In filter mode, the structure realizes LP and BP filter responses simultaneously with independent control of and BW. In third mode of operation, the circuit offers quadrature current-mode outputs. The validity of the proposed configuration in various modes of operation has been established by the PSPICE simulations.

Acknowledgment

The authors gratefully acknowledge Professor Dr. Raj Senani, the Head of the Division of Electronics and Communication Engineering, and the Director of NSIT, New Delhi, for useful discussions/suggestions.

References

  1. C. Toumazau, F. J. Lidgey, and D. G. Haig, Analogue IC Design: The Current-Mode Approach, Peter Peregrinus Limited, London, UK, 1990.
  2. D. R. Bhaskar and R. Senani, “New FTFN-based grounded-capacitor SRCO with explicit current-mode output and reduced number of resistors,” AEU—International Journal of Electronics and Communications, vol. 59, no. 1, pp. 48–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Senani, “New types of sine wave oscillators,” IEEE Transactions on Instrumentation and Measurement, vol. 34, no. 3, pp. 461–463, 1985. View at Google Scholar · View at Scopus
  4. R. Senani and D. R. Bhaskar, “Single op-amp sinusoidal oscillators suitable for generation of very low frequencies,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 4, pp. 777–779, 1991. View at Publisher · View at Google Scholar · View at Scopus
  5. D. R. Bhaskar and R. Senani, “New CFOA-based single-element-controlled sinusoidal oscillators,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 2014–2021, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Chen, C. C. Chen, H. W. Tsao, and S. I. Liu, “Current-mode oscillators using single current follower,” Electronics Letters, vol. 27, no. 22, pp. 2056–2059, 1991. View at Google Scholar · View at Scopus
  7. M. T. Abuelmatti, “Grounded-capacitor current-mode oscillator using single current follower,” IEEE Transactions on Circuits and Systems I, vol. 39, no. 12, pp. 1018–1020, 1992. View at Google Scholar
  8. M. T. Abuelma'Atti and H. A. Al-Zaher, “Current-mode sinusoidal oscillators using single FTFN,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 1, pp. 69–74, 1999. View at Google Scholar · View at Scopus
  9. S. S. Gupta and R. Senani, “Grounded-capacitor current-mode SRCO: novel application of DVCCC,” Electronics Letters, vol. 36, no. 3, pp. 195–196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Chang, B. M. Al-Hashimi, H. P. Chen, S. H. Tu, and J. A. Wan, “Current mode single resistance controlled oscillators using only grounded passive components,” Electronics Letters, vol. 38, no. 19, pp. 1071–1072, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Senani and R. K. Sharma, “Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp,” IEICE Electronics Express, vol. 2, no. 1, pp. 14–18, 2005. View at Google Scholar
  12. V. Aggarwal, S. Kilinç, and U. Çam, “Minimum component SRCO and VFO using a single DVCCC,” Analog Integrated Circuits and Signal Processing, vol. 49, no. 2, pp. 181–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Çam, A. Toker, O. Çiçekoǧlu, and H. Kuntman, “Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN,” Analog Integrated Circuits and Signal Processing, vol. 24, no. 3, pp. 231–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Biolek, R. Senani, V. Biolkova, and Z. Kolka, “Active elements for analog signal processing: classification, review, and new proposals,” Radioengineering, vol. 17, no. 4, pp. 15–32, 2008. View at Google Scholar · View at Scopus
  15. A. Yeşil, F. Kaçar, and H. Kuntman, “New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application,” Radioengineering, vol. 20, no. 3, pp. 632–637, 2011. View at Google Scholar
  16. D. Prasad, D. R. Bhaskar, and A. K. Singh, “Electronically controllable grounded capacitor current-mode quadrature oscillator using single MO-CCCDTA,” Radioengineering, vol. 20, no. 1, pp. 354–359, 2011. View at Google Scholar · View at Scopus