Table of Contents
ISRN Condensed Matter Physics
Volume 2012 (2012), Article ID 382939, 9 pages
http://dx.doi.org/10.5402/2012/382939
Research Article

Phonon Conductance of Potassium- and Sodium-Doped Transpolyacetylene Chain

1Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri, BP17 RP, 15000 Tizi-Ouzou, Algeria
2Faculté des Sciences et de la Technologie, Université d’Adrar, Rue du 11 Décembre 1960, 01000 Adrar, Algeria

Received 4 August 2012; Accepted 30 September 2012

Academic Editors: M. Naito and A. Oyamada

Copyright © 2012 M. Belhadi and S. Kheffache. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. MacDiarmid, “Nobel lecture: “synthetic metals”: a novel role for organic polymers,” Reviews of Modern Physics, vol. 73, no. 3, pp. 701–712, 2001. View at Publisher · View at Google Scholar
  2. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Soliton excitations in polyacetylene,” Physical Review B, vol. 22, no. 4, pp. 2099–2111, 1980. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Takayama, Y. R. Lin-Liu, and K. Maki, “Continuum model for solitons in polyacetylene,” Physical Review B, vol. 21, no. 6, pp. 2388–2393, 1980. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Małachowski and J. Zmija, “Organic field-effect transistors,” Opto-Electronics Review, vol. 18, no. 2, pp. 121–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Sun, Y. Liu, and D. Zhu, “Advances in organic field-effect transistors,” Journal of Materials Chemistry, vol. 15, no. 1, pp. 53–65, 2005. View at Publisher · View at Google Scholar
  6. J. Kovac, L. Peternai, and O. Lengyel, “Advanced light emitting diodes structures for optoelectronic applications,” Thin Solid Films, vol. 433, no. 1-2, pp. 22–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990. View at Google Scholar · View at Scopus
  8. M. H. Chen, J. Hou, Z. Hong et al., “Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions,” Advanced Materials, vol. 21, no. 42, pp. 4238–4242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Advanced Materials, vol. 19, no. 12, pp. 1551–1566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, vol. 107, no. 4, pp. 1324–1338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Roth and W. Graupner, “Conductive polymers: evaluation of industrial applications,” Synthetic Metals, vol. 57, no. 1, pp. 3623–3631, 1993. View at Google Scholar · View at Scopus
  12. N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarmann, and N. Theophilou, “High electrical conductivity in doped polyacetylene,” Nature, vol. 327, no. 6121, pp. 403–405, 1987. View at Google Scholar · View at Scopus
  13. A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials,” Journal of Physical Chemistry B, vol. 105, no. 36, pp. 8475–8491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Reviews of Modern Physics, vol. 60, no. 3, pp. 781–850, 1988. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Zhao, Z. An, and C. Q. Wu, “Lattice vibrational analysis of polyacene,” The European Physical Journal B, vol. 43, no. 1, pp. 53–64, 2005. View at Publisher · View at Google Scholar
  16. H. Naaramann and N. Theophilou, “New process for the production of metal-like, stable polyacetylene,” Synthetic Metals, vol. 22, no. 1, pp. 1–8, 1987. View at Publisher · View at Google Scholar
  17. C. K. Chiang, C. R. Fincher, Y. W. Park et al., “Electrical conductivity in doped polyacetylene,” Physical Review Letters, vol. 39, no. 17, pp. 1098–1101, 1977. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Suh, T. J. Kim, Y. W. Park, K. Akagi, H. Shirakawa, and J. S. Brooks, “Low dimensional transport properties of iodine doped ultrathin polyacetylene of 100 nm thickness,” Synthetic Metals, vol. 119, no. 1–3, pp. 467–468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. D. B. Tanner, G. L. Doll, A. M. Rao, P. C. Eklund, G. A. Arbuckle, and A. G. MacDiarmid, “Optical properties of potassium-doped polyacetylene,” Synthetic Metals, vol. 141, no. 1-2, pp. 75–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Lesiak, A. Kosinski, M. Krawczyk et al., “Characterization of polyacetylene and polyacetylene doped with palladium,” Polish Journal of Chemistry, vol. 74, no. 6, pp. 847–865, 2000. View at Google Scholar · View at Scopus
  21. R. Landauer, “Conductance determined by transmission: probes and quantised constriction resistance,” Journal of Physics, vol. 1, no. 43, pp. 8099–8110, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Büttiker, “Four-terminal phase-coherent conductance,” Physical Review Letters, vol. 57, no. 14, pp. 1761–1764, 1986. View at Publisher · View at Google Scholar
  23. M. Belhadi, A. Khater, J. Hardy, and K. Maschke, “Phonon transmission via a three-terminal junction in low dimensional wave-guides,” The European Physical Journal—Applied Physics, vol. 35, no. 3, pp. 185–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Belhadi, A. Khater, O. Rafil, and J. Hardy, “Scattering of phonons in hexagonal 2D crystals on their domain boundaries,” Physica Status Solidi B, vol. 228, no. 3, pp. 685–693, 2001. View at Publisher · View at Google Scholar
  25. M. Belhadi, R. Chadli, A. Khater, and M. Abou Ghantous, “Spin dynamics across an inhomogeneous atomic boundary separating ultrathin Heisenberg ferromagnetic films,” The European Physical Journal—Applied Physics, vol. 37, no. 1, pp. 25–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Belhadi and R. Chadli, “Scattering and localization of spin waves in quasi-2D Heisenberg ferromagnets with extended flat interface boundaries,” Surface Review and Letters, vol. 11, no. 3, pp. 321–329, 2004. View at Publisher · View at Google Scholar
  27. F. Mila and J. Szeftel, “Calculation of phonon dispersion in superlattices using the matching procedure,” Physical Review B, vol. 38, no. 9, pp. 5931–5937, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Szeftel and A. Khater, “Calculation of surface phonons and resonances: the matching procedure revisited: I,” Journal of Physics C, vol. 20, no. 29, pp. 4725–4736, 1987. View at Publisher · View at Google Scholar
  29. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Physical Review Letters, vol. 42, no. 25, pp. 1698–1701, 1979. View at Publisher · View at Google Scholar · View at Scopus