Table of Contents
ISRN Pathology
Volume 2012, Article ID 387145, 13 pages
http://dx.doi.org/10.5402/2012/387145
Review Article

Confocal Laser Endomicroscopy: Applications in Clinical and Translational Science—A Comprehensive Review

Innere Medizin I, Universitätsklinikum Tübingen, 72076 Tübingen, Germany

Received 7 November 2012; Accepted 11 December 2012

Academic Editors: V. J. Amatya, R. Drut, T. Kovács, and A. Wincewicz

Copyright © 2012 Martin Goetz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Kiesslich, J. Burg, M. Vieth et al., “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology, vol. 127, no. 3, pp. 706–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Goetz, A. Watson, and R. Kiesslich, “Confocal laser endomicroscopy in gastrointestinal diseases,” Journal of Biophotonics, vol. 4, no. 7-8, pp. 498–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hoffman, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, and R. Klesslich, “Confocal laser endomicroscopy technical status and current indications,” Endoscopy, vol. 38, no. 12, pp. 1275–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Kiesslich, M. Goetz, and M. F. Neurath, “Confocal Laser Endomicroscopy for Gastrointestinal Diseases,” Gastrointestinal Endoscopy Clinics of North America, vol. 18, no. 3, pp. 451–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, and M. F. Neurath, “Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer,” Nature Clinical Practice Oncology, vol. 4, no. 8, pp. 480–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. D. De Palma, M. B. Wallace, and M. Giovannini, “Confocal laser endomicroscopy,” Gastroenterology Research and Practice, vol. 2012, Article ID 216209, 2 pages, 2012. View at Publisher · View at Google Scholar
  7. M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology, vol. 136, no. 5, pp. 1509–1513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Becker, T. Vercauteren, C. H. von Weyhern, C. Prinz, R. M. Schmid, and A. Meining, “High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video),” Gastrointestinal Endoscopy, vol. 66, no. 5, pp. 1001–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Meining, “Confocal endomicroscopy,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 4, pp. 629–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. S. Kwon, L. M. Wong Kee Song, D. G. Adler et al., “Endocytoscopy,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 610–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sasajima, S. E. Kudo, H. Inoue et al., “Real-time in vivo virtual histology of colorectal lesions when using the endocytoscopy system,” Gastrointestinal Endoscopy, vol. 63, no. 7, pp. 1010–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. Kudo, K. Wakamura, N. Ikehara, Y. Mori, H. Inoue, and S. Hamatani, “Diagnosis of colorectal lesions with a novel endocytoscopic classification—a pilot study,” Endoscopy, vol. 43, pp. 869–875, 2011. View at Publisher · View at Google Scholar
  13. M. B. Wallace, A. Meining, M. I. Canto et al., “The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract,” Alimentary Pharmacology and Therapeutics, vol. 31, no. 5, pp. 548–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointestinal Endoscopy, vol. 62, no. 5, pp. 686–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Goetz, T. Toermer, M. Vieth et al., “Simultaneous confocal laser endomicroscopy and chromoendoscopy with topical cresyl violet,” Gastrointestinal Endoscopy, vol. 70, no. 5, pp. 959–968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Goetz, C. Footner, E. Schirrmacher et al., “In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases,” Endoscopy, vol. 39, no. 4, pp. 350–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. B. Dunbar, E. A. Montgomery, and M. I. Canto, “The learning curve of in vivo confocal laser endomicroscopy for prediction of Barrett's esophagus,” Gastroenterology, vol. 134, supplement 1, no. 4, pp. A-62–A-63, 2008. View at Google Scholar
  18. http://www.endomicroscopy.org/learningcenter/.
  19. R. Kiesslich, P. R. Galle, and M. F. Neurath, Eds., Atlas of Endomicroscopy, Springer Medizin, Heidelberg, Germany, 2008.
  20. A. M. Buchner, V. Gomez, M. G. Heckman et al., “The learning curve of in vivo probe-based confocal laser endomicroscopy for prediction of colorectal neoplasia,” Gastrointestinal Endoscopy, vol. 73, no. 3, pp. 556–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. B. Dunbar, P. Okolo, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Kiesslich, M. Goetz, K. Lammersdorf et al., “Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis,” Gastroenterology, vol. 132, no. 3, pp. 874–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Y. Lin, M. Maricevich, N. Bardeesy, R. Weissleder, and U. Mahmood, “In vivo quantitative microvasculature phenotype imaging of healthy and malignant tissues using a fiber-optic confocal laser microprobe,” Translational Oncology, vol. 1, pp. 84–94, 2008. View at Google Scholar
  24. V. Becker, M. Vieth, M. Bajbouj, R. M. Schmid, and A. Meining, “Confocal laser scanning fluorescence microscopy for in vivo determination of microvessel density in Barrett's esophagus,” Endoscopy, vol. 40, no. 11, pp. 888–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Tous, J. Delgado, T. Zinkl et al., “The anatomy of an optical biopsy semantic retrieval system,” IEEE MultiMedia, vol. 19, pp. 16–27, 2012. View at Publisher · View at Google Scholar
  26. B. Andre, T. Vercauteren, A. M. Buchner, M. W. Shahid, M. B. Wallace, and N. Ayache, “An image retrieval approach to setup difficulty levels in training systems for endomicroscopy diagnosis,” Medical Image Computing and Computer-Assisted Intervention, vol. 13, pp. 480–487, 2010. View at Google Scholar
  27. O. Pech, T. Rabenstein, H. Manner et al., “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clinical Gastroenterology and Hepatology, vol. 6, no. 1, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Liu, Y. Q. Li, T. Yu et al., “Confocal laser endomicroscopy for superficial esophageal squamous cell carcinoma,” Endoscopy, vol. 41, no. 2, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kiesslich, L. Gossner, M. Goetz et al., “In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy,” Clinical Gastroenterology and Hepatology, vol. 4, no. 8, pp. 979–987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Pohl, T. Rösch, M. Vieth et al., “Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett's oesophagus,” Gut, vol. 57, no. 12, pp. 1648–1653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Bajbouj, M. Vieth, T. Rösch et al., “Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barretts esophagus,” Endoscopy, vol. 42, no. 6, pp. 435–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. L. Chu, Y. B. Zhen, G. P. Lv et al., “Microalterations of esophagus in patients with non-erosive reflux disease: in-vivo diagnosis by confocal laser endomicroscopy and its relationship with gastroesophageal reflux,” The American Journal of Gastroenterology, vol. 107, pp. 864–874, 2012. View at Publisher · View at Google Scholar
  33. J. N. Zhang, Y. Q. Li, Y. A. Zhao et al., “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointestinal Endoscopy, vol. 67, no. 6, pp. 843–853, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Wang, R. Ji, T. Yu et al., “Classification of histological severity of Helicobacter pylori—associated gastritis by confocal laser endomicroscopy,” World Journal of Gastroenterology, vol. 16, no. 41, pp. 5203–5210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Kiesslich, M. Goetz, J. Burg et al., “Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy,” Gastroenterology, vol. 128, no. 7, pp. 2119–2123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Ji, Y. Q. Li, X. M. Gu, T. Yu, X. L. Zuo, and C. J. Zhou, “Confocal laser endomicroscopy for diagnosis of Helicobacter pylori infection: a prospective study,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 700–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. T. Guo, Y. Q. Li, T. Yu et al., “Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study,” Endoscopy, vol. 40, no. 7, pp. 547–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. W. B. Li, X. L. Zuo, F. Zuo et al., “Characterization and identification of gastric hyperplastic polyps and adenomas by confocal laser endomicroscopy,” Surgical Endoscopy and Other Interventional Techniques, vol. 24, no. 3, pp. 517–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. G. Yeoh, M. Salto-Tellez, and C. J. Khor, Confocal Laser Endoscopy Is Useful for In-Vivo Rapid diagnosIs of Gastric Neoplasia and Preneoplasia, Digestive Disease Weak, Chicago, Ill, USA, 2005.
  40. S. Kitakabe, Y. Niwa, and Y. Hirooka, Confocal Laser Endoscopy for the Diagnosis of Gastric Diseases In Vivo, Digestive Disease Weak, Chicago, Ill, USA, 2005.
  41. W. B. Li, X. L. Zuo, C. Q. Li et al., “Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions,” Gut, vol. 60, no. 3, pp. 299–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Ji, X. L. Zuo, C. Q. Li, C. J. Zhou, and Y. Q. Li, “Confocal endomicroscopy for in vivo prediction of completeness after endoscopic mucosal resection,” Surgical Endoscopy, vol. 25, no. 6, pp. 1933–1938, 2010. View at Google Scholar
  43. R. W. L. Leong, N. Q. Nguyen, C. G. Meredith et al., “In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease,” Gastroenterology, vol. 135, no. 6, pp. 1870–1876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Günther, S. Daum, F. Heller et al., “Diagnostic value of confocal endomicroscopy in celiac disease,” Endoscopy, vol. 42, no. 3, pp. 197–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Venkatesh, A. Abou-Taleb, M. Cohen et al., “Role of confocal endomicroscopy in the diagnosis of celiac disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 51, no. 3, pp. 274–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Sanduleanu, A. Driessen, E. Gomez-Garcia, W. Hameeteman, A. de Bruïne, and A. Masclee, “In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy-guided confocal laser endomicroscopy,” Clinical Gastroenterology and Hepatology, vol. 8, no. 4, pp. 371–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Kuiper, F. J. van den Broek, S. van Eeden et al., “New classification for probe-based confocal laser endomicroscopy in the colon,” Endoscopy, vol. 43, pp. 1076–1081, 2011. View at Publisher · View at Google Scholar
  48. A. M. Buchner, M. W. Shahid, M. G. Heckman et al., “Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps,” Gastroenterology, vol. 138, no. 3, pp. 834–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. K. Rex, C. Kahi, M. O'Brien et al., “The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps,” Gastrointestinal Endoscopy, vol. 73, no. 3, pp. 419–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Sumiyama, R. Kiesslich, T. R. Ohya, M. Goetz, and H. Tajiri, “In vivo imaging of enteric neuronal networks in humans using confocal laser endomicroscopy,” Gastroenterology, vol. 143, pp. 1152–1153, 2012. View at Publisher · View at Google Scholar
  51. F. J. C. van den Broek, P. C. F. Stokkers, J. B. Reitsma et al., “Random biopsies taken during colonoscopic surveillance of patients with longstanding ulcerative colitis: low yield and absence of clinical consequences,” American Journal of Gastroenterology. In press. View at Publisher · View at Google Scholar
  52. H. Neumann, M. Vieth, R. Atreya et al., “Assessment of Crohn's disease activity by confocal laser endomicroscopy,” Inflammatory Bowel Diseases, vol. 18, no. 12, pp. 2261–2269, 2012. View at Publisher · View at Google Scholar
  53. R. Kiesslich, A. Hoffman, M. Goetz et al., “In vivo diagnosis of collagenous colitis by confocal endomicroscopy,” Gut, vol. 55, no. 4, pp. 591–592, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Zambelli, V. Villanacci, E. Buscarini, G. Bassotti, and L. Albarello, “Collagenous colitis: a case series with confocal laser microscopy and histology correlation,” Endoscopy, vol. 40, no. 7, pp. 606–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Meining, S. Schwendy, V. Becker, R. M. Schmid, and C. Prinz, “In vivo histopathology of lymphocytic colitis,” Gastrointestinal Endoscopy, vol. 66, no. 2, pp. 398–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Bojarski, U. Günther, K. Rieger et al., “In vivo diagnosis of acute intestinal graft-versus-host disease by confocal endomicroscopy,” Endoscopy, vol. 41, no. 5, pp. 433–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. U. Günther, H. J. Epple, F. Heller et al., “In vivo diagnosis of intestinal spirochaetosis by confocal endomicroscopy,” Gut, vol. 57, no. 9, pp. 1331–1333, 2008. View at Google Scholar · View at Scopus
  58. T. Rösch, K. Hofrichter, E. Frimberger et al., “ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study,” Gastrointestinal Endoscopy, vol. 60, no. 3, pp. 390–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Meining, E. Frimberger, V. Becker et al., “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clinical Gastroenterology and Hepatology, vol. 6, no. 9, pp. 1057–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. S. Loeser, M. E. Robert, A. Mennone, M. H. Nathanson, and P. Jamidar, “Confocal endomicroscopic examination of malignant biliary strictures and histologic correlation with lymphatics,” Journal of Clinical Gastroenterology, vol. 45, no. 3, pp. 246–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” Journal of Clinical Gastroenterology, vol. 46, pp. 401–406, 2012. View at Publisher · View at Google Scholar
  62. M. Wallace, G. Y. Lauwers, Y. Chen et al., “Miami classification for probe-based confocal laser endomicroscopy,” Endoscopy, vol. 43, pp. 882–891, 2011. View at Publisher · View at Google Scholar
  63. A. Meining, R. J. Shah, A. Slivka et al., “Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures,” Endoscopy, vol. 44, pp. 251–257, 2012. View at Publisher · View at Google Scholar
  64. V. J. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointestinal Endoscopy, vol. 74, no. 5, pp. 1049–1060, 2011. View at Publisher · View at Google Scholar
  65. S. von Delius, H. Feussner, D. Wilhelm et al., “Transgastric in vivo histology in the peritoneal cavity using miniprobe-based confocal fluorescence microscopy in an acute porcine model,” Endoscopy, vol. 39, no. 5, pp. 407–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. V. Kantsevoy, R. Kiesslich, X. Dray et al., “Translumenal intraperitoneal confocal laser endomicroscopy: a pilot study in a porcine model,” Gastrointestinal Endoscopy, vol. 67, p. AB117, 2008. View at Google Scholar
  67. M. Goetz, R. Klesslich, H. P. Dienes et al., “In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time,” Endoscopy, vol. 40, no. 7, pp. 554–562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. U. Denzer, A. Arnoldy, S. Kanzler, P. R. Galle, H. P. Dienes, and A. W. Lohse, “Prospective randomized comparison of minilaparoscopy and percutaneous liver biopsy: diagnosis of cirrhosis and complications,” Journal of Clinical Gastroenterology, vol. 41, no. 1, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Hoffman, F. Rahman, S. Prengel et al., “Mini-laparoscopy in the endoscopy unit: safety and outcomes in over one thousand patients,” The World Journal of Gastrointestinal Endoscopy, vol. 3, pp. 6–10, 2011. View at Publisher · View at Google Scholar
  70. M. Goetz, I. Deris, M. Vieth et al., “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” Journal of Hepatology, vol. 53, no. 1, pp. 84–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Ishizawa, S. Tamura, K. Masuda et al., “Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery,” Journal of the American College of Surgeons, vol. 208, no. 1, pp. e1–e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Q. Nguyen, A. V. Biankin, R. W. Leong et al., “Real time intraoperative confocal laser microscopy-guided surgery,” Annals of Surgery, vol. 249, pp. 735–737, 2009. View at Publisher · View at Google Scholar
  73. L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” Journal of Investigative Dermatology, vol. 121, no. 4, pp. 706–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Anikijenko, L. T. Vo, E. R. Murr et al., “In vivo detection of small subsurface melanomas in athymic mice using noninvasive fiber optic confocal imaging,” Journal of Investigative Dermatology, vol. 117, no. 6, pp. 1442–1448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Sonn, K. E. Mach, K. Jensen et al., “Fibered confocal microscopy of bladder tumors: an ex vivo study,” Journal of Endourology, vol. 23, no. 2, pp. 197–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Wiesner, W. Jäger, A. Salzer et al., “Confocal laser endomicroscopy for the diagnosis of urothelial bladder neoplasia: a technology of the future?” British Journal of Urology International, vol. 107, no. 3, pp. 399–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. G. A. Sonn, S. N. E. Jones, T. V. Tarin et al., “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” Journal of Urology, vol. 182, no. 4, pp. 1299–1305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. B. R. Haxel, M. Goetz, R. Kiesslich, and J. Gosepath, “Confocal endomicroscopy: a novel application for imaging of oral and oropharyngeal mucosa in human,” European Archives of Oto-Rhino-Laryngology, vol. 267, no. 3, pp. 443–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Pogorzelski, U. Hanenkamp, M. Goetz, R. Kiesslich, and J. Gosepath, “Systematic intraoperative application of confocal endomicroscopy for early detection and resection of squamous cell carcinoma of the head and neck: a preliminary report,” Archives of Otolaryngology—Head & Neck Surgery, vol. 138, pp. 404–411, 2012. View at Publisher · View at Google Scholar
  80. J. Tan, M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren, “Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy,” British Journal of Obstetrics and Gynaecology, vol. 116, no. 12, pp. 1663–1670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Foersch, A. Heimann, A. Ayyad et al., “Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo,” PLoS One, vol. 7, no. 7, article e41760, 2012. View at Google Scholar
  82. J. Eschbacher, N. L. Martirosyan, P. Nakaji et al., “In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors,” Journal of Neurosurgery, vol. 116, pp. 854–860, 2012. View at Publisher · View at Google Scholar
  83. N. L. Martirosyan, D. D. Cavalcanti, J. M. Eschbacher et al., “Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor,” Journal of Neurosurgery, vol. 115, pp. 1131–1138, 2011. View at Publisher · View at Google Scholar
  84. M. Goetz and R. Kiesslich, “Advances of endomicroscopy for gastrointestinal physiology and diseases,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 298, no. 6, pp. G797–G806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. P. M. Delaney, M. R. Harris, and R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clinical and Experimental Pharmacology and Physiology, vol. 20, no. 3, pp. 197–198, 1993. View at Google Scholar · View at Scopus
  86. P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Applied Optics, vol. 33, no. 4, pp. 573–377, 1994. View at Google Scholar · View at Scopus
  87. P. M. Delaney, R. G. King, J. R. Lambert, and M. R. Harris, “Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo,” Journal of Anatomy, vol. 184, no. 1, pp. 157–160, 1994. View at Google Scholar · View at Scopus
  88. M. Goetz, B. Memadathil, S. Biesterfeld et al., “In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy,” World Journal of Gastroenterology, vol. 13, no. 15, pp. 2160–2165, 2007. View at Google Scholar · View at Scopus
  89. W. J. McLaren, P. Anikijenko, S. G. Thomas, P. M. Delaney, and R. G. King, “In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (FOCI),” Digestive Diseases and Sciences, vol. 47, no. 11, pp. 2424–2433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Goetz, M. Vieth, S. Kanzler et al., “In vivo confocal laser laparoscopy allows real time subsurface microscopy in animal models of liver disease,” Journal of Hepatology, vol. 48, no. 1, pp. 91–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Goetz, J. V. Ansems, P. R. Galle, M. Schuchmann, and R. Kiesslich, “In vivo real-time imaging of the liver with confocal endomicroscopy permits visualization of the temporospatial patterns of hepatocyte apoptosis,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 301, pp. G764–G772, 2011. View at Publisher · View at Google Scholar
  92. M. Goetz, S. Thomas, A. Heimann et al., “Dynamic in vivo imaging of microvasculature and perfusion by miniaturized confocal laser microscopy,” European Surgical Research, vol. 41, no. 3, pp. 290–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. A. J. M. Watson, S. Chu, L. Sieck et al., “Epithelial barrier function in vivo is sustained despite gaps in epithelial layers,” Gastroenterology, vol. 129, no. 3, pp. 902–912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Kiesslich, M. Goetz, E. M. Angus et al., “Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy,” Gastroenterology, vol. 133, no. 6, pp. 1769–1778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. J. J. Liu, K. L. Madsen, P. Boulanger, L. A. Dieleman, J. Meddings, and R. N. Fedorak, “Mind the gaps: confocal endomicroscopy showed increased density of small bowel epithelial gaps in inflammatory bowel disease,” Journal of Clinical Gastroenterology, vol. 45, no. 3, pp. 240–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. J. J. Liu, K. Wong, A. L. Thiesen et al., “Increased epithelial gaps in the small intestines of patients with inflammatory bowel disease: density matters,” Gastrointestinal Endoscopy, vol. 73, no. 6, pp. 1174–1180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Moussata, M. Goetz, A. Gloeckner et al., “Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo,” Gut, vol. 60, no. 1, pp. 26–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Kiesslich, C. A. Duckworth, D. Moussata et al., “Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease,” Gut, vol. 61, pp. 1146–1153, 2012. View at Publisher · View at Google Scholar
  99. A. Meining and M. B. Wallace, “Endoscopic imaging of angiogenesis in vivo,” Gastroenterology, vol. 134, no. 4, pp. 915–918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Goetz and T. D. Wang, “Molecular imaging in gastrointestinal endoscopy,” Gastroenterology, vol. 138, no. 3, pp. 828.e1–833.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. U. Mahmood, “Optical molecular imaging approaches in colorectal cancer,” Gastroenterology, vol. 138, no. 2, pp. 419–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. P. L. Hsiung, J. Hardy, S. Friedland et al., “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nature Medicine, vol. 14, pp. 454–458, 2008. View at Publisher · View at Google Scholar
  103. M. Goetz, A. Ziebart, S. Foersch et al., “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology, vol. 138, no. 2, pp. 435–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Foersch, R. Kiesslich, M. J. Waldner et al., “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut, vol. 59, pp. 1046–1055, 2010. View at Publisher · View at Google Scholar
  105. C. Fottner, E. Mettler, M. Goetz et al., “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology, vol. 151, no. 5, pp. 2179–2188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. M. S. Hoetker, R. Kiesslich, M. Diken et al., “Molecular in vivo imaging of gastric cancer in a human-murine xenograft model: targeting epidermal growth factor receptor (EGFR),” Gastrointestinal Endoscopy, vol. 76, pp. 612–620, 2012. View at Publisher · View at Google Scholar
  107. M. S. Hoetker, R. Kiesslich, M. Diken, P. R. Galle, and M. Goetz, “Molecular endomicroscopy predicts tumor response to cetuximab therapy in human colon cancer xenografts,” Gastroenterology, vol. 142, p. S-6, 2012. View at Google Scholar