Abstract

Analytical and numerical solutions are obtained for coupled nonlinear partial differential equation by the well-known Laplace decomposition method. We combined Laplace transform and Adomain decomposition method and present a new approach for solving coupled SchrΓΆdinger-Korteweg-de Vries (Sch-KdV) equation. The method does not need linearization, weak nonlinearity assumptions, or perturbation theory. We compared the numerical solutions with corresponding analytical solutions.

1. Introduction

Systems of partial differential equations have attracted much attention in a variety of applied sciences because of their wide applicability. These systems were formally derived to describe wave propagation to model the shallow water waves [1–5] and to examine some chemical reaction-diffusion model of Brusselator [4–6]. Some of the commonly used methods to solve these equations are the method of characteristics, the Riemann invariants, and Adomian decomposition method [6].

In this work, we used Laplace decomposition method introduced by Khuri [7, 8] which is further used by Yusufoglu to solve Duffing equation [9] and Elgasery for Falkner-Skan equations [10]. This technique, modified by Hussain and Khan [11], illustrates how the Laplace transform may be used to approximate the solutions of the nonlinear partial differential equations by extending the decomposition method [12, 13].

2. Laplace Decomposition Method (LDM)

In this section, we outline the main steps of the method. We consider the nonlinear partial differential equations in an operator form:𝐿𝑑𝑒+𝑅1(𝑒,𝑣)+𝑁1(𝑒,𝑣)=𝑓1,𝐿𝑑𝑣+𝑅2(𝑒,𝑣)+𝑁2(𝑒,𝑣)=𝑓2.(1) With initial data 𝑒(π‘₯,0)=𝑔1𝑣(π‘₯),(π‘₯,0)=𝑔2(π‘₯),(2) where 𝐿𝑑=πœ•/πœ•π‘‘ is a first-order partial differential operator, 𝑅1, 𝑅2 and 𝑁1, 𝑁2 are linear and nonlinear operators, respectively, and 𝑓1,𝑓2 are the source terms. By applying the Laplace transform to both sides of (1) and using initial conditions (2), we have 𝐿𝐿𝑑𝑒𝑅+𝐿1𝑁(𝑒,𝑣)+𝐿1𝑓(𝑒,𝑣)=𝐿1ξ€Έ,𝐿𝐿𝑑(𝑅𝑣)+𝐿2(𝑁𝑒,𝑣)+𝐿2(𝑓𝑒,𝑣)=𝐿2ξ€Έ.(3) By the differentiation property of Laplace transform, we get 𝑔𝐿(𝑒)=1(π‘₯)𝑝+𝐿𝑓1ξ€Έπ‘βˆ’1𝑝𝐿𝑅1𝑁(𝑒,𝑣)+𝐿1,𝑔(𝑒,𝑣)𝐿(𝑣)=2(π‘₯)𝑝+𝐿𝑓2ξ€Έπ‘βˆ’1𝑝𝐿𝑅2𝑁(𝑒,𝑣)+𝐿2,(𝑒,𝑣)ξ€Έξ€»(4) where β€œπ‘β€   is Laplace domain function. Solutions 𝑒(π‘₯,𝑑) and 𝑣(π‘₯,𝑑) in LDM are defined as 𝑒(π‘₯,𝑑)=βˆžξ“π‘›=0𝑒𝑛,𝑣(π‘₯,𝑑)=βˆžξ“π‘›=0𝑣𝑛.(5) The nonlinear terms 𝑁1,𝑁2, represented by infinite series, 𝑁1(π‘₯,𝑑)=βˆžξ“π‘›=0𝐴𝑛,𝑁2(π‘₯,𝑑)=βˆžξ“π‘›=0𝐡𝑛(6) are the Adomian polynomials [14], generated for all forms of nonlinearity and they are determined by the following relations: 𝐴𝑛=1𝑑𝑛!π‘›π‘‘πœ†π‘›ξƒ©π‘1βˆžξ“π‘–=0πœ†π‘–π‘’π‘–ξƒͺξƒ­πœ†=0,𝐡𝑛=1𝑑𝑛!π‘›π‘‘πœ†π‘›ξƒ©π‘2βˆžξ“π‘–=0πœ†π‘–π‘£π‘–ξƒͺξƒ­πœ†=0.(7) Substituting (5) and (6) into (4), gives πΏξƒ©βˆžξ“π‘›=0𝑒𝑛ξƒͺ=𝑔1(π‘₯)𝑝+𝐿𝑓1ξ€Έπ‘βˆ’1𝑝𝐿𝑅1ξƒ¬ξƒ©βˆžξ“π‘›=0𝑒𝑛ξƒͺ,ξƒ©βˆžξ“π‘›=0𝑣𝑛ξƒͺξƒ­ξƒͺ+πΏβˆžξ“π‘›=0𝐴𝑛,𝐿ξƒͺξƒ­βˆžξ“π‘›=0𝑣𝑛ξƒͺ=𝑔2(π‘₯)𝑝+𝐿𝑓2ξ€Έπ‘βˆ’1𝑝𝐿𝑅2ξƒ¬ξƒ©βˆžξ“π‘›=0𝑒𝑛ξƒͺ,ξƒ©βˆžξ“π‘›=0𝑣𝑛ξƒͺξƒ­ξƒͺ+πΏβˆžξ“π‘›=0𝐡𝑛.ξƒͺξƒ­(8) Applying the linearity of the Laplace transform, we deduct the following recursive relations: 𝐿𝑒0ξ€Έ=𝑔1(π‘₯)𝑝+𝐿𝑓1𝑝,𝐿𝑣0ξ€Έ=𝑔2(π‘₯)𝑝+𝐿𝑓2𝑝,𝐿𝑒1ξ€Έ1=βˆ’π‘πΏπ‘…ξ€Ίξ€·1𝑒0,𝑣0βˆ’1𝑝𝐿𝐴0ξ€»,𝐿𝑣1ξ€Έ1=βˆ’π‘πΏπ‘…ξ€Ίξ€·2𝑒0,𝑣0βˆ’1𝑝𝐿𝐡0ξ€».(9) In general, for π‘˜β‰₯1, the recursive relations are given by πΏξ€·π‘’π‘˜+1ξ€Έ1=βˆ’π‘πΏξ€Ίπ‘…1ξ€·π‘’π‘˜,π‘£π‘˜βˆ’1ξ€Έξ€»π‘πΏξ€Ίπ΄π‘˜ξ€»,πΏξ€·π‘£π‘˜+1ξ€Έ1=βˆ’π‘πΏξ€Ίπ‘…2ξ€·π‘’π‘˜,π‘£π‘˜βˆ’1ξ€Έξ€»π‘πΏξ€Ίπ΅π‘˜ξ€».(10) Applying the inverse Laplace transform, we can evaluate π‘’π‘˜ and π‘£π‘˜ (π‘˜β‰₯0). In some cases the exact solution in the closed form can be obtained.

3. Application

At the classical level, a set of coupled nonlinear wave equations describes the interaction between high-frequency and low-frequency waves [15], and the calculation of exact and numerical solutions of the equations, in particular, travelling wave solutions, plays an important role in wave-wave interaction and soliton theory [1, 16].

We consider the SchrΓΆdinger-KdV (Sch-KdV) equation as a model for the interaction of long and short nonlinear waves: 𝑖𝐸𝑑=𝐸π‘₯π‘₯πœ‚+πΈπœ‚,𝑑=βˆ’6πΈπœ‚π‘₯βˆ’πœ‚π‘₯π‘₯π‘₯+ξ‚€||𝐸||2π‘₯.(11) With initial conditions √𝐸(π‘₯,0)=22π‘˜2ξ€·1βˆ’3tanh2𝑒(π‘˜π‘₯)𝑖𝛼π‘₯,πœ‚(π‘₯,0)=8π‘˜2βˆ’π›Ό3βˆ’6π‘˜2tanh2(π‘˜π‘₯),(12) where 𝛼, π‘˜ are arbitrary constant.

With Laplace decomposition method on (11) and using the differentiation property of Laplace transform, initial conditions and the inverse Laplace transforms areβˆžξ“π‘›=0𝐸𝑛(π‘₯,𝑑)=𝐸(π‘₯,0)βˆ’π‘–πΏβˆ’11𝑝𝐿𝐸𝑛π‘₯π‘₯+βˆžξ“π‘›=0𝐴𝑛,(πœ‚,𝐸)ξƒͺξƒ­βˆžξ“π‘›=0πœ‚π‘›(π‘₯,𝑑)=πœ‚(π‘₯,0)+πΏβˆ’11π‘πΏξƒ©βˆžξ“π‘›=0𝐡𝑛(𝐸)βˆ’6βˆžξ“π‘›=0𝐢𝑛(πœ‚,𝐸)βˆ’πœ‚π‘›π‘₯π‘₯π‘₯,ξƒͺξƒ­(13) where βˆ‘(π‘₯,𝑑)=βˆžπ‘›=0𝐸𝑛,βˆ‘πœ‚(π‘₯,𝑑)=βˆžπ‘›=0πœ‚π‘›, and βˆ‘βˆžπ‘›=0𝐴𝑛(πœ‚,𝐸)=πœ‚πΈβ€‰ β€‰βˆ‘βˆžπ‘›=0𝐡𝑛(𝐸)=(|𝐸|2)π‘₯  β€‰βˆ‘βˆžπ‘›=0𝐢𝑛(πœ‚,𝐸)=πΈπœ‚π‘₯ are adomian polynomials that represent nonlinear terms.

So the recursive relation is deduced as 𝐸(π‘₯,0)=𝐸0√=22π‘˜2ξ€·1βˆ’3tanh2𝑒(π‘˜π‘₯)𝑖𝛼π‘₯,𝐸1(π‘₯,𝑑)=βˆ’π‘–πΏβˆ’11𝑝𝐿𝐸0π‘₯π‘₯+βˆžξ“π‘›=0𝐴0,𝐸(πœ‚,𝐸)ξƒͺ𝑛+1(π‘₯,𝑑)=βˆ’π‘–πΏβˆ’11𝑝𝐿𝐸𝑛π‘₯π‘₯+βˆžξ“π‘›=0𝐴𝑛,πœ‚(πœ‚,𝐸)ξƒͺξƒ­(π‘₯,0)=πœ‚0=8π‘˜2βˆ’π›Ό3βˆ’6π‘˜2tanh2πœ‚(π‘˜π‘₯),1(π‘₯,𝑑)=πΏβˆ’11π‘πΏξƒ©βˆžξ“π‘›=0𝐡0(𝐸)βˆ’6βˆžξ“π‘›=0𝐢0(πœ‚,𝐸)βˆ’πœ‚0π‘₯π‘₯π‘₯,πœ‚ξƒͺ𝑛+1(π‘₯,𝑑)=πΏβˆ’11π‘πΏξƒ©βˆžξ“π‘›=0𝐡𝑛(𝐸)βˆ’6βˆžξ“π‘›=0𝐢𝑛(πœ‚,𝐸)βˆ’πœ‚π‘›π‘₯π‘₯π‘₯,ξƒͺ𝑛β‰₯1.(14) By this recursive relation we can find other components of the solution as 𝐸1(π‘₯,𝑑)=βˆ’π‘–πΏβˆ’1ξ‚Έ1𝑝𝐿𝐸0π‘₯π‘₯+πœ‚0𝐸0ξ€Έξ‚Ή,𝐸12√(π‘₯,𝑑)=2π‘˜2𝑑3Γ—ξ€Ίξ€·3𝛼2+𝛼+10π‘˜2ξ€Έ(1βˆ’3tanh(π‘˜π‘₯))Γ—cos(𝛼π‘₯)+36π‘˜π›Όsech2(ξ€»2√kx)Γ—tanh(π‘˜π‘₯)cos(𝛼π‘₯)+𝑖2π‘˜2𝑑3Γ—ξ€Ίξ€·3𝛼2+𝛼+10π‘˜2ξ€ΈΓ—(1βˆ’3tanh(π‘˜π‘₯))sin(𝛼π‘₯)βˆ’36π‘˜π›Όsech2ξ€»,πœ‚(π‘˜π‘₯)tanh(π‘˜π‘₯)cos(𝛼π‘₯)1(π‘₯,𝑑)=πΏβˆ’1ξ‚Έ1𝑝𝐿||𝐸0||2π‘₯βˆ’6𝐸0πœ‚0xβˆ’πœ‚0π‘₯π‘₯π‘₯,πœ‚1(π‘₯,𝑑)=βˆ’48π‘˜5𝑑sech2(ξ€·π‘˜π‘₯)4βˆ’9tanh2(ξ€Έβˆšπ‘˜π‘₯)+1442π‘˜5𝑑sech2Γ—ξ€·(π‘˜π‘₯)tanh(π‘˜π‘₯)1βˆ’3tanh2ξ€Έβˆš(π‘˜π‘₯)cos(𝛼π‘₯)+144𝑖2π‘˜5𝑑×sech2ξ€·(π‘˜π‘₯)tanh(π‘˜π‘₯)1βˆ’3tanh2𝐸(π‘˜π‘₯)Γ—sin(𝛼π‘₯),2(π‘₯,𝑑)=βˆ’π‘–πΏβˆ’1ξ‚Έ1𝑝𝐿𝐸1π‘₯π‘₯+πœ‚1𝐸0+πœ‚0𝐸1ξ€Έξ‚Ή,𝐸2√(π‘₯,𝑑)=βˆ’2π‘˜2𝑑23Γ—ξ‚Έ6π‘˜2ξ€·15𝛼2+𝛼+10π‘˜2ξ€Έsech2Γ—ξ€·(π‘˜π‘₯)1βˆ’3tanh2ξ€Έ+ξ€·(π‘˜π‘₯)3𝛼2+𝛼+10π‘˜2ξ€ΈΓ—ξ€·1βˆ’3tanh2ξ€ΈΓ—ξ‚΅(π‘˜π‘₯)3𝛼2+π›Όβˆ’8π‘˜23βˆ’6π‘˜23tanh2𝑒(π‘˜π‘₯)𝛼𝑖π‘₯√+482π‘˜7𝑑2𝑖sech2Γ—ξ€·(π‘˜π‘₯)tanh(π‘˜π‘₯)4βˆ’9tanh2(π‘˜π‘₯)ξ€Έξ€·1βˆ’3tanh2𝑒(π‘˜π‘₯)𝛼𝑖π‘₯βˆ’288π‘˜7𝑑2𝑖sech2Γ—ξ€·(π‘˜π‘₯)tanh(π‘˜π‘₯)1βˆ’3tanh2ξ€Έ(π‘˜π‘₯)2𝑒2𝛼𝑖π‘₯βˆ’βˆš2π‘˜2𝑑23×𝑖216π‘˜3𝛼sech2(π‘˜π‘₯)tanh3ξ€·(π‘˜π‘₯)βˆ’24π›Όπ‘˜3𝛼2+𝛼+13π‘˜2ξ€ΈΓ—sech2𝑒(π‘˜π‘₯)tanh(π‘˜π‘₯)𝛼𝑖π‘₯,πœ‚2(π‘₯,𝑑)=πœ‚1(π‘₯,𝑑)βˆ’6π‘‘π‘˜4sech5Γ—ξ€½π‘˜(π‘˜π‘₯)4𝑑sech3(π‘˜π‘₯)Γ—(1208βˆ’1191cosh(2π‘˜π‘₯)+120cosh(4π‘˜π‘₯)βˆ’cosh(6π‘˜π‘₯))+24𝑒2𝑖𝛼π‘₯ξ€Ύ.(𝑖𝛼cosh(π‘˜π‘₯)+2π‘˜sinh(π‘˜π‘₯))(15)

The other components of the decomposition series can be determined in a similar way; we can obtain the expression of 𝐸(π‘₯,𝑑) in a Taylor series, which gives the closed form solutions as:√𝐸(π‘₯,𝑑)=22π‘˜2ξ€·1βˆ’3tanh2𝑖1(π‘˜(π‘₯+2𝛼𝑑))Γ—exp𝛼π‘₯+3ξ€·3𝛼2𝑑,+π›Όβˆ’10π‘˜ξ‚„ξ‚πœ‚(π‘₯,𝑑)=8π‘˜2βˆ’π›Ό3βˆ’6π‘˜2tanh2(π‘˜(π‘₯+2𝛼𝑑)).(16)

4. Numerical Description of the Solution

The Laplace decomposition method is used for finding the exact and approximate travelling-waves solutions of the Sch-KdV equation. Both the exact and approximate solutions obtained for n = 2 using LDM are plotted in Figure 1. It is evident that when compute more terms for the decomposition series the numerical results are getting much closer to the corresponding analytical solutions.

5. Conclusion

The Laplace decomposition method is a powerful method which has provided an efficient potential for the solution of physical applications modeled by nonlinear differential equations. The algorithm can be used without any need to complex calculations except for simple and elementary operations.