Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 428396, 6 pages
http://dx.doi.org/10.5402/2012/428396
Research Article

Ondansetron HCl Microemulsions for Transdermal Delivery: Formulation and In Vitro Skin Permeation

1Department of Pharmaceutics, Bengal College of Pharmaceutical Science and Research, Durgapur 713212, India
2Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj 757086, India

Received 13 March 2012; Accepted 6 May 2012

Academic Editors: M. AghazadehTabrizi, R. Lesyk, and S. Velaga

Copyright © 2012 Jadupati Malakar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Khan, P. Kataria, P. Nakhat, and P. Yeole, “Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets,” AAPS PharmSciTech, vol. 8, no. 2, article 46, 2007. View at Google Scholar · View at Scopus
  2. N. Hassan, R. K. Khar, M. Ali, and J. Ali, “Development and evaluation of buccal bioadhesive tablet of an anti-emetic agent ondansetron,” AAPS PharmSciTech, vol. 10, no. 4, pp. 1085–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. I. I. Salem, J. M. R. Lopez, and A. C. Galan, “Ondansetron hydrochloride,” in Analytical Profiles of Drug Substances and Excipients, H. G. Brittan, Ed., pp. 301–339, Academic Press, San Diego, Calif, USA, 2001. View at Google Scholar
  4. H. S. Gwak, I. S. Oh, and I. K. Chun, “Transdermal delivery of ondansetron hydrochloride: effect of vehicles and permeation enhancers,” Drug Development and Industrial Pharmacy, vol. 30, no. 2, pp. 187–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Swain, S. Pattnaik, N. Yeasmin, and S. Mallick, “Preclinical evaluation of drug in adhesive type ondansetron loaded transdermal therapeutic systems,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 36, pp. 237–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Obata, Y. Ashitaka, S. Kikuchi, K. Isowa, and K. Takayama, “A statistical approach to the development of a transdermal delivery system for ondansetron,” International Journal of Pharmaceutics, vol. 399, no. 1-2, pp. 87–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Swain, S. Pattnaik, S. C. Sahu, K. K. Patnaik, and S. Mallick, “Drug in adhesive type transdermal matrix systems of ondansetron hydrochloride: optimization of permeation pattern using response surface methodology,” Journal of Drug Targeting, vol. 18, no. 2, pp. 106–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mittal, U. Sara, and A. Ali, “Formulation and evaluation of monolithic matrix polymer films for transdermal delivery of nitrendipine,” Acta Pharmaceutica, vol. 59, no. 4, pp. 383–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. W. Barry, “Novel mechanisms and devices to enable successful transdermal drug delivery,” European Journal of Pharmaceutical Sciences, vol. 14, no. 2, pp. 101–114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Moser, K. Kriwet, A. Naik, Y. N. Kalia, and R. H. Guy, “Passive skin penetration enhancement and its quantification in vitro,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 52, no. 2, pp. 103–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. Osborne, A. J. I. Ward, and K. J. O'Neill, “Microemulsions as topical drug delivery vehicles: in-vitro transdermal studies of a model hydrophilic drug,” Journal of Pharmacy and Pharmacology, vol. 43, no. 6, pp. 451–454, 1991. View at Google Scholar · View at Scopus
  12. M. Trotta, F. Pattarino, and M. R. Gasco, “Influence of counter ions on the skin permeation of methotrexate from water-oil microemulsions,” Pharmaceutica Acta Helvetiae, vol. 71, no. 2, pp. 135–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Badawi, S. A. Nour, W. S. Sakran, and S. M. S. El-Mancy, “Preparation and evaluation of microemulsion systems containing salicylic acid,” AAPS PharmSciTech, vol. 10, no. 4, pp. 1081–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. F. Nazar, A. M. Khan, and S. S. Shah, “Microemulsion system with improved loading of piroxicam: a study of microstructure,” AAPS PharmSciTech, vol. 10, no. 4, pp. 1286–1294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Malakar, S. O. Sen, A. K. Nayak, and K. K. Sen, “Development and evaluation of microemulsions for transdermal delivery of insulin,” ISRN Pharmaceutics, vol. 2011, Article ID 780150, 2011. View at Google Scholar
  16. J. H. Yang, Y. I. Kim, and K. M. Kim, “Preparation and evaluation of aceclofenac microemulsion for transdermal delivery system,” Archives of Pharmacal Research, vol. 25, no. 4, pp. 534–540, 2002. View at Google Scholar · View at Scopus
  17. M. Kreilgaard, “Influence of microemulsions on cutaneous drug delivery,” Advanced Drug Delivery Reviews, vol. 54, pp. S77–S98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. Patel, R. B. Patel, J. R. Parikh, A. B. Solanki, and B. G. Patel, “Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole,” AAPS PharmSciTech, vol. 10, no. 3, pp. 917–923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Gasco, “Microemulsions in the pharmaceutical field: perspectives and applications,” in Industrial Applications of Microemulsions, pp. 97–122, Marcel Dekker, New York, NY, USA, 1997. View at Google Scholar
  20. O. Pillai and R. Panchagnula, “Transdermal iontophoresis of insulin: VI. Influence of pretreatment with fatty acids on permeation across rat skin,” Skin Pharmacology and Physiology, vol. 17, no. 6, pp. 289–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Nayak, B. Mohanty, and K. K. Sen, “Comparative evaluation of in vitro diclofenac sodium permeability across excised mouse skin from different common pharmaceutical vehicles,” International Journal of PharmTech Research, vol. 2, no. 1, pp. 920–930, 2010. View at Google Scholar · View at Scopus
  22. D. V. Derle, B. S. H. Sagar, and R. Pimpale, “Microemulsion as a vehicle for transdermal permeation of nimesulide,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 5, pp. 622–625, 2006. View at Google Scholar · View at Scopus
  23. B. Baroli, M. A. López-Quintela, M. B. Delgado-Charro, A. M. Fadda, and J. Blanco-Méndez, “Microemulsions for topical delivery of 8-methoxsalen,” Journal of Controlled Release, vol. 69, no. 1, pp. 209–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. V. M. Patel, B. G. Prajapati, and M. M. Patel, “Effect of hydrophilic polymers on buccoadhesive Eudragit patches of propranolol hydrochloride using factorial design,” AAPS PharmSciTech, vol. 8, no. 2, article 45, 2007. View at Google Scholar