Table of Contents
ISRN Physical Chemistry
Volume 2012, Article ID 431367, 7 pages
http://dx.doi.org/10.5402/2012/431367
Research Article

Formation of Van Der Waals Complexes in Concerted Unimolecular Elimination Processes

The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel

Received 8 January 2012; Accepted 1 February 2012

Academic Editors: A. M. Koster and S. Sasaki

Copyright © 2012 Faina Dubnikova and Assa Lifshitz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Okada, E. Tshuikow-Roux, and P. J. Evans, “Single-pulse shock-tube study of the thermal decomposition of ethyl fluoride and N-propyl chloride,” Journal of Physical Chemistry, vol. 84, pp. 467–471, 1980. View at Google Scholar
  2. P. J. Evans, T. Ichimura, and E. Tschuikow-Roux, “A comparison of two single-pulse shock-tube techniques: the thermal decomposition of ethyl chloride and n-propyl chloride,” International Journal of Chemical Kinetics, vol. 10, no. 8, pp. 855–869, 1978. View at Publisher · View at Google Scholar
  3. W. Tsang and A. Lifshitz, “Kinetic stability of 1,1,1-trifluoroethane,” International Journal of Chemical Kinetics, vol. 30, no. 9, pp. 621–628, 1998. View at Google Scholar · View at Scopus
  4. P. V. Mitin, V. G. Barabanov, and G. V. Volkov, “Kinetics of the thermal decomposition of 1,1-difluoro-1-chloroethane and 1,1,1-trifluoroethane,” Kinetics and Catalysis, vol. 29, pp. 1279–1286, 1988. View at Google Scholar
  5. B. R. Giri and R. S. Tranter, “Dissociation of 1,1,1-trifluoroethane behind reflected shock waves: shock tube/time-of-flight mass spectrometry experiments,” Journal of Physical Chemistry A, vol. 111, no. 9, pp. 1585–1592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Lewis, M. Keil, and M. Sarr, “Gas phase thermal decomposition of tert-butyl alcohol,” Journal of the American Chemical Society, vol. 96, pp. 4398–4404, 1974. View at Google Scholar
  7. A. Heikkila, “Matrix isolation and ab initio studies of 1:1 hydrogen-bonded complexes HCN-H2O and HNC-H2O produced by photolysis of formaldoxime,” Journal of Physical Chemistry A, vol. 103, no. 16, pp. 2945–2951, 1999. View at Google Scholar
  8. G. Larsen, Z. K. Ismail, B. Herreros, and R. D. Parra, “Benzene/tert-butyl alcohol interactions. 1. A theoretical and experimental study,” Journal of Physical Chemistry A, vol. 102, no. 24, pp. 4734–4741, 1998. View at Google Scholar · View at Scopus
  9. R. L. Rowley, C. M. Tracy, and T. A. Pakkanen, “Potential energy surfaces for small alcohol dimers. II. Propanol, isopropanol, t -butanol, and sec-butanol,” Journal of Chemical Physics, vol. 127, no. 2, Article ID 025101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Mandal, D. J. Ramdass, and E. Arunan, “Rotational spectra and structure of the Ar2-H2S complex: pulsed nozzle Fourier transform microwave spectroscopic and ab initio studies,” Physical Chemistry Chemical Physics, vol. 7, no. 14, pp. 2740–2746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Dubnikova and A. Lifshitz, “Molecular hydrogen elimination from 2,5-dihydrofuran, 2,3-dihydrofuran, and 2-methyl-2,5-dihydrofuran: quantum chemical and kinetics calculations,” International Journal of Chemical Kinetics, vol. 33, no. 11, pp. 685–697, 2001. View at Publisher · View at Google Scholar
  12. A. M. El-Nahas, A. H. Mangood, H. Takeuchi, and T. Taketsugu, “Thermal decomposition of 2-butanol as a potential nonfossil fuel: a computational study,” Journal of Physical Chemistry A, vol. 115, no. 13, pp. 2837–2846, 2011. View at Publisher · View at Google Scholar
  13. E. R. Johnson, I. D. Mackie, and G. A. DiLabio, “Dispersion interactions in density-functional theory,” Journal of Physical Organic Chemistry, vol. 22, no. 12, pp. 1127–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. H. Dunning Jr, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, no. 2, pp. 1007–1023, 1989. View at Google Scholar
  15. R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” The Journal of Chemical Physics, vol. 96, no. 9, pp. 6796–6806, 1992. View at Google Scholar · View at Scopus
  16. T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, “A long-range-corrected time-dependent density functional theory,” Journal of Chemical Physics, vol. 120, no. 18, pp. 8425–8433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. O. A. Vydrov and G. E. Scuseria, “Assessment of a long-range corrected hybrid functional,” Journal of Chemical Physics, vol. 125, no. 23, Article ID 234109, pp. 1–9, 2006. View at Publisher · View at Google Scholar
  19. O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, “Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals,” Journal of Chemical Physics, vol. 125, no. 7, Article ID 074106, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, “Tests of functionals for systems with fractional electron number,” Journal of Chemical Physics, vol. 126, no. 15, Article ID 154109, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Grimme, “Semiempirical hybrid density functional with perturbative second-order correlation,” Journal of Chemical Physics, vol. 124, no. 3, Article ID 034108, pp. 1–6, 2006. View at Publisher · View at Google Scholar
  22. T. Schwabe and S. Grimme, “Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects,” Physical Chemistry Chemical Physics, vol. 8, no. 38, pp. 4398–4401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Schwabe and S. Grimme, “Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability.,” Physical Chemistry Chemical Physics, vol. 9, no. 26, pp. 3397–3406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Molecular Physics, vol. 19, no. 4, pp. 553–566, 1970. View at Publisher · View at Google Scholar
  25. S. Simon, M. Duran, and J. J. Dannenberg, “How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?” Journal of Chemical Physics, vol. 105, no. 24, pp. 11024–11031, 1996. View at Google Scholar · View at Scopus
  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, Conn, USA, 2009.
  27. H. Eyring, “The activated complex in chemical reactions,” Journal of Chemical Physics, vol. 3, pp. 107–115, 1935. View at Google Scholar
  28. M. G. Evans and M. Polanyi, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution,” Transactions of the Faraday Society, vol. 31, pp. 875–894, 1935. View at Publisher · View at Google Scholar