Table of Contents
ISRN High Energy Physics
Volume 2012 (2012), Article ID 436580, 20 pages
http://dx.doi.org/10.5402/2012/436580
Research Article

Neutrino Splitting and Density-Dependent Dispersion Relations

1TPCSF, IHEP, Chinese Academy of Sciences, Beijing 100049, China
2Key Laboratory of Particle Astrophysics, IHEP, Chinese Academy of Sciences, Beijing 100049, China
3Theoretical Physics Division, IHEP, Chinese Academy of Sciences, YuQuan Lu 19(B), Beijing 100049, China

Received 21 August 2012; Accepted 2 October 2012

Academic Editors: G. Bonvicini, K. Cho, M. V. Garzelli, and O. A. Sampayo

Copyright © 2012 Emilio Ciuffoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Adam, N. Agafonova, A. Aleksandrov et al., “Measurement of the neutrino velocity with the OPERA detector in the CNGS beam,” http://arxiv.org/abs/1109.4897.
  2. A. Zichichi, “Results from LVD-OPERA Combined Analysis: A Time-Shift in the OPERA Setup,” http://agenda.infn.it/getFile.py/access?resId=0&materialId=slides&confId=4896.
  3. A. G. Cohen and S. L. Glashow, “Pair creation constrains superluminal neutrino propagation,” Physical Review Letters, vol. 107, Article ID 181803, 2011. View at Google Scholar
  4. L. Gonzalez-Mestres, “Astrophysical consequences of the OPERA superluminal neutrino,” http://arxiv.org/abs/1109.6630.
  5. X.-J. Bi, P.-F. Yin, Z.-H. Yu, Q. Yuan, and Constraints a, “Constraints and tests of the OPERA superluminal neutrinos,” Physical Review Letters, vol. 107, no. 24, Article ID 241802, 5 pages, 2011. View at Publisher · View at Google Scholar
  6. R. Cowsik, S. Nussinov, and U. Sarkar, “Superluminal neutrinos at OPERA confront pion decay kinematics,” Physical Review Letters, vol. 107, no. 25, Article ID 251801, 4 pages, 2011. View at Publisher · View at Google Scholar
  7. G. Cacciapaglia, A. Deandrea, and L. Panizzi, “Superluminal neutrinos in long baseline experiments and SN1987a,” Journal of High Energy Physics, vol. 1111, p. 137, 2011. View at Google Scholar
  8. G. F. Giudice, S. Sibiryakov, and A. Strumia, “Interpreting OPERA results on superluminal neutrino,” Nuclear Physics B, vol. 861, no. 1, pp. 1–16, 2012. View at Google Scholar
  9. K. Hirata, T. Kajita, and M. Koshiba, “Observation of a neutrino burst from the supernova SN1987A,” Physical Review Letters, vol. 58, no. 14, pp. 1490–1493, 1987. View at Google Scholar
  10. R. M. Bionta, G. Blewitt, C. B. Bratton et al., “Observation of a neutrino burst in coincidence with supernova SN 1987a in the large magellanic cloud,” Physical Review Letters, vol. 58, p. 1494, 1987. View at Google Scholar
  11. E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I. Volchenko, “Detection of the neutrino signal from Sn1987a in the Lmc using the inr baksan underground scintillation telescope,” Physics Letters B, vol. 205, pp. 209–214, 1988. View at Google Scholar
  12. I. Shelton, “Supernova 1987A in the Large Magellanic Cloud,” IAU Circular No. 4316.
  13. R. Garrison and I. Shelton, “Supernova 1987A in the Large Magellanic Cloud,” IAU Circular No. 4330.
  14. E. J. Wampler, J. W. Truran, L. B. Lucy, P. H. Hoeflich, and W. Hillebrandt, “Constraints on the interpretation of the neutrino experiments by the optical observations of SN 1987a,” Astronomy and Astrophysics, vol. 182, no. 2, pp. L51–L54, 1987. View at Google Scholar
  15. M. Li, D. Liu, J. Meng, T. Wang, and L. Zhou, “Replaying neutrino bremsstrahlung with general dispersion relations,” http://arxiv.org/abs/1111.3294.
  16. F. L. Villante and F. Vissani, “On the generality of the Cohen and Glashow constraints on the neutrino velocity,” http://arxiv.org/abs/1110.4591.
  17. L.-A. Zhao and X. Zhang, “Fitting to data of superluminal neutrinos with phenomenological scenarios,” http://arxiv.org/pdf/1110.6577.pdf.
  18. Y. Huo, T. Li, Y. Liao, D. V. Nanopoulos, and Y. Qi, “Constraints on neutrino velocities revisited,” Physical Review D, vol. 85, Article ID 034022, 2012. View at Google Scholar
  19. N. Agafonova, A. Aleksandrov, O. Altinok et al., “Study of neutrino interactions with the electronic detectors of the OPERA experiment,” New Journal of Physics, vol. 13, Article ID 053051, 2011. View at Publisher · View at Google Scholar
  20. A. Einstein, “on the electrodynamics of moving bodies,” Annalen der Physik, vol. 17, p. 891, 1905, Annalen der Physik, vol. 14, pp. 194, 2005. View at Google Scholar
  21. P. C. de Holanda and A. Y. Smirnov, “Homestake result, sterile neutrinos and low energy solar neutrino experiments,” Physical Review D, vol. 69, no. 11, Article ID 113002, 8 pages, 2004. View at Google Scholar
  22. P. C. de Holanda and A. Y. Smirnov, “Solar neutrino spectrum, sterile neutrinos, and additional radiation in the Universe,” Physical Review D, vol. 83, no. 11, Article ID 113011, 13 pages, 2011. View at Publisher · View at Google Scholar
  23. R. Abbasi et al., “Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube,” Physical Review D, vol. 83, no. 1, Article ID 012001, 2011. View at Publisher · View at Google Scholar
  24. A. Aguilar-Arevalo, L. B. Auerbach, R. L. Burman et al., “Evidence for neutrino oscillations from the observation of v¯e appearance in a v¯μ beam,” Physical Review D, vol. 64, no. 11, Article ID 112007, 22 pages, 2001. View at Google Scholar
  25. B. Armbruster, I. M. Blair, B. A. Bodmann et al., “Upper limits for neutrino oscillations v¯μv¯e from muon decay at rest,” Physical Review D, vol. 65, no. 11, Article ID 112001, 16 pages. View at Publisher · View at Google Scholar
  26. L. Wolfenstein, “Neutrino oscillations in matter,” Physical Review D, vol. 17, no. 9, pp. 2369–2374, 1978. View at Publisher · View at Google Scholar
  27. S. P. Mikheev and A. Y. Smirnov, “Resonance amplication of oscillations in matter and spectroscopy of solar neutrinos,” Soviet Journal of Nuclear Physics, vol. 42, p. 913, 1985, Yadernaya Fizika, vol. 42, pp. 1441, 1985. View at Google Scholar
  28. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, “OPERA neutrinos and relativity,” Modern Physics Letters A, vol. 27, Article ID 1250063, 2012. View at Google Scholar
  29. G. Amelino-Camelia, “On the fate of Lorentz symmetry in relative-locality,” Physical Review D, vol. 85, Article ID 084034, 2012. View at Google Scholar
  30. F. R. Klinkhamer, “Superluminal neutrino, avor, and relativity,” Physical Review D, vol. 85, Article ID 016011, 2012. View at Google Scholar
  31. Y. Ling, “A note on superluminal neutrinos and deformed special relativity,” http://arxiv.org/abs/1111.3716.
  32. Y. Huo, T. Li, Y. Liao, D. V. Nanopoulos, Y. Qi, and F. Wang, “The OPERA superluminal neutrinos from deformed lorentz invariance,” http://arxiv.org/abs/1111.4994.
  33. G. Amelino-Camelia, “Particle-dependent deformations of Lorentz symmetry,” Symmetry, vol. 4, pp. 344–378, 2012. View at Google Scholar
  34. G. Guo and X.-G. He, “Dispersion relations explaining OPERA data from deformed lorentz transformation,” http://arxiv.org/abs/1111.6330.
  35. J. Evslin, “Challenges confronting superluminal neutrino models,” International Journal of Modern Physics Conference Series, vol. 10, no. 1, pp. 159–168, 2012, In: Proceedings of the Symposium on Cosmology and Particle Astrophysics (CosPA '11), Beijing, China, December 2011. View at Google Scholar
  36. A. Hebecker and A. Knochel, “The price of neutrino superluminality continues to rise,” Physics Letters B, vol. 715, no. 1–3, pp. 116–120, 2012. View at Google Scholar
  37. D. B. Kaplan, A. E. Nelson, and N. Weiner, “Neutrino oscillations as a probe of dark energy,” Physical Review Letters, vol. 93, no. 9, Article ID 091801, 4 pages, 2004. View at Publisher · View at Google Scholar
  38. K. A. Olive and M. Pospelov, “Environmental dependence of masses and coupling constants,” Physical Review D, vol. 77, no. 4, Article ID 043524, 11 pages, 2008. View at Publisher · View at Google Scholar
  39. G. Dvali and A. Vikman, “Price for environmental neutrino-superluminality,” Journal of High Energy Physics, vol. 2, p. 134, 2012. View at Publisher · View at Google Scholar
  40. J. Alexandre, J. Ellis, and N. E. Mavromatos, “On the possibility possibility of superluminal neutrino propagation,” Physics Letters B, vol. 706, pp. 456–461, 2012. View at Google Scholar
  41. A. Kehagias, “Relativistic superluminal neutrinos,” http://arxiv.org/abs/1109.6312.
  42. T. Li and D. V. Nanopoulos, “Background dependent lorentz violation from string theory,” http://arxiv.org/abs/1110.0451.
  43. T. Li and D. V. Nanopoulos, “Dependent lorentz violation: natural solutions to the theoretical challenges of the OPERA experiment,” The European Physical Journal C, vol. 72, Article ID 2044, 2012. View at Google Scholar
  44. G. Amelino-Camelia, G. Gubitosi, N. Loret, F. Mercati, G. Rosati, and P. Lipari, “Opera-reassessing data on the energy dependence of the speed of neutrinos,” International Journal of Modern Physics D, vol. 20, no. 14, p. 2623, 2011. View at Publisher · View at Google Scholar
  45. S. S. Gubser, “Superluminal neutrinos and extra dimensions: constraints from the null energy condition,” Physics Letters B, vol. 705, p. 279, 2011. View at Google Scholar
  46. S. Hannestad and M. S. Sloth, “Apparent faster than light propagation from light sterile neutrinos,” http://arxiv.org/pdf/1109.6282.pdf.
  47. A. Nicolaidis, “Neutrino shortcuts in spacetimeNeutrino shortcuts in spacetime,” Modern Physics Letters A, vol. 27, Article ID 1250127, 2012. View at Google Scholar
  48. W. Winter, “Constraints on the interpretation of the superluminal motion of neutrinos at OPERA,” Physical Review D, vol. 85, Article ID 017301, 2012. View at Google Scholar
  49. I. Y. Aref'eva and I. V. Volovich, “Superluminal dark neutrinos,” http://arxiv.org/abs/1110.0456.
  50. J. Bramante, “Sterile neutrino production production through a matter eect enhancement at long baselines,” http://arxiv.org/abs/1110.4871.
  51. F. R. Klinkhamer, “Spontaneously broken Lorentz invariance from the dynamics of a heavy sterile neutrino,” JETP Letters, vol. 95, pp. 497–500, 2012. View at Google Scholar
  52. D. M. Mattingly, L. Maccione, M. Galaverni, S. Liberati, and G. Sigl, “cosmogenic neutrino constraints on Planck-scale Lorentz violation,” Journal of Cosmology and Astroparticle Physics, vol. 2010, article 007, 2010. View at Publisher · View at Google Scholar
  53. J. M. Carmona and J. L. Cortes, “Constraints from neutrino decay on superluminal velocities,” http://arxiv.org/abs/1110.0430.
  54. L. Maccione, S. Liberati, and D. M. Mattingly, “Violations of Lorentz invariance in the neutrino sector after OPERA,” http://arxiv.org/abs/1110.0783.
  55. M. Antonello, P. Aprili, B. Baibussinov et al., “Search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS,” Physics Letters B, vol. 711, pp. 270–275, 2012. View at Google Scholar
  56. P. W. Cattaneo, “Testing the special relativity theory with neutrino interactions,” Europhysics Letters, vol. 99, Article ID 51001, 2012. View at Google Scholar
  57. P. Adamson, P. Andreopoulos, K. E. Arms et al., “Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam,” Physical Review D, vol. 76, no. 7, Article ID 072005, 2007. View at Publisher · View at Google Scholar
  58. M. Mannarelli, M. Mitra, F. L. Villante, and F. Vissani, “Non-standard neutrino propagation and pion decay,” Journal of High Energy Physics, vol. 1201, p. 136, 2012. View at Google Scholar
  59. F. Bezrukov and H. M. Lee, “Model dependence of the bremsstrahlung eects from the superluminal neutrino at OPERA,” Physical Review D, vol. 85, Article ID 031901, 2012. View at Google Scholar
  60. G. R. Kalbeisch, N. Baggett, E. C. Fowler, and J. Alspector, “Comparison of Neutrino, anti-neutrino, and muon velocities,” Physical Review Letters, vol. 43, no. 19, pp. 1361–1364, 1979. View at Publisher · View at Google Scholar