Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 436763, 9 pages
http://dx.doi.org/10.5402/2012/436763
Review Article

A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products

1School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK
2Department of Pharmaceutical Sciences, Medway School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK

Received 3 October 2012; Accepted 30 October 2012

Academic Editors: A. Bolognese, Y. Murata, H. Sah, and A. I. Segall

Copyright © 2012 Mohammed Maniruzzaman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Maniruzzaman, J. S. Boateng, M. Bonnefille, A. Aranyos, J. C. Mitchell, and D. Douroumis, “Taste masking of paracetamol by hot melt extrusion: an in vitro and in vivo evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, no. 2, pp. 433–442, 2012. View at Google Scholar
  2. M. A. Repka, S. Shah, J. Lu et al., “Melt extrusion: process to product,” Expert Opinion on Drug Delivery, vol. 9, no. 1, pp. 105–125, 2012. View at Google Scholar
  3. M. A. Repka, S. Majumdar, S. K. Battu, R. Srirangam, and S. B. Upadhye, “Applications of hot-melt extrusion for drug delivery,” Expert Opinion on Drug Delivery, vol. 5, no. 12, pp. 1357–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Repka, S. K. Battu, S. B. Upadhye et al., “Pharmaceutical applications of hot-melt extrusion: part II,” Drug Development and Industrial Pharmacy, vol. 33, no. 10, pp. 1043–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Crowley, F. Zhang, M. A. Repka et al., “Pharmaceutical applications of hot-melt extrusion: part I,” Drug Development and Industrial Pharmacy, vol. 33, no. 9, pp. 909–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Charlie, “Continous mixing of solid dosage forms via hot-melt extrusion,” Pharmaceutical Technology, vol. 32, no. 10, pp. 76–86, 2008. View at Google Scholar · View at Scopus
  7. S. James, Encyclopedia of Pharmaceutical Technology, Marcel Dekker, New York, NY, USA, 3rd edition, 2004.
  8. G. P. Andrews and D. S. Jones, “Formulation and characterization of hot melt extruded dosage forms: challenges and opportunities,” Cheminform, vol. 41, no. 43, 2010. View at Publisher · View at Google Scholar
  9. J. Breitenbach, “Melt extrusion: from process to drug delivery technology,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 54, no. 2, pp. 107–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. P. Andrews, D. N. Margetson, D. S. Jones, M. S. McAllister, and O. A. Diak, “Hot-melt extrusion: an emerging drug delivery technology,” Pharmaceutical Technology Europe, vol. 21, no. 1, pp. 24–27, 2009. View at Google Scholar · View at Scopus
  11. N. Follonier, E. Doelker, and E. T. Cole, “Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs,” Drug Development and Industrial Pharmacy, vol. 20, no. 8, pp. 1323–1339, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Gryczke, Melt Extrusion with EUDRAGIT Solubility Enhancement Modified Release. Degussa, RÖHM GmbH & Co. KG, Darmstadt, Germany, 2006.
  13. R. Chokshi and H. Zia, “Hot-melt extrusion technique: a review,” International Journal of Pharmaceutical Research, vol. 3, pp. 3–16, 2004. View at Google Scholar
  14. T. Whelan and D. Dunning, The Dynisco Extrusion Processors Handbook, London School of Polymer Technology, Polytechnic of North London, London, UK, 1st edition, 1988.
  15. G. P. Andrews, D. N. Margetson, D. S. Jones, S. M. McAllister, and O. A. Diak, A Basic Guide: Hot-melt Extrusion, vol. 13, UKICRS, 2008.
  16. J. L. White, Twin Screw Extrusion: Technology and Principles, Hanser/Gardner, Cincinnati, Ohio, USA, 1991.
  17. http://www.pharinfo.net/reviews/meltgranulationtechniques/reviews.
  18. J. W. McGnity and J. J. KOleng, “Preparation and evaluation of rapid release granules using novel melt extrusion technique,” American Association of Pharmaceutical Scientists, pp. 153–154, 2004. View at Google Scholar
  19. D. S. Jones, “Engineering drug delivery using polymer extrusion/injection moulding technologies,” School of Pharmacy, vol. 4-9, pp. 18–27, 2008. View at Google Scholar
  20. H. H. Grunhagen and O. Muller, “Melt extrusion technology,” Pharmaceutical Manufacturing International, vol. 1, pp. 167–170, 1995. View at Google Scholar
  21. S. Singhal, V. K. Lohar, and V. Arora, “Hot-melt extrusion technique,” WebmedCentral Pharmaceutical Sciences, vol. 2, no. 1, Article ID 001459, 2011. View at Google Scholar
  22. M. Mollan, “Historical overview,” in Pharmaceutical Extrusion Technology, I. Ghebre-Sellassie and C. Martin, Eds., pp. 1–18, CRC Press, New York, NY, USA, 2003. View at Google Scholar
  23. A. Senouci, A. Smith, and P. Richmond, “Extrusion cooking,” Chemical Engineer, no. 417, pp. 30–33, 1985. View at Google Scholar · View at Scopus
  24. E. Sebestyen, “Problems of grains preservation in storage facilities,” Journal of Flour and Animal Feed Milling, vol. 10, pp. 24–25, 1974. View at Google Scholar
  25. D. J. Wedlock and D. V. Wijngaarden, “Fast dispersing solid PVP-containing crop protection formulation and process therefore,” US Patent 1992, 5: 665, 369.
  26. M. A. Repka, M. A. Elsohly, M. Munjal, and S. A. Ross, “Temperature stability and bioadhesive properties of Δ9-tetrahydrocannabinol incorporated hydroxypropylcellulose polymer matrix systems,” Drug Development and Industrial Pharmacy, vol. 32, no. 1, pp. 21–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Maniruzzaman, M. Rana, J. S. Boateng, and D. Douroumis, “Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers,” Drug development and Industrial Pharmacy. In press.
  28. J. O. Morales and J. T. McConville, “Manufacture and characterization of mucoadhesive buccal films,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 2, pp. 187–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Zheng, R. Yang, X. Tang, and L. Zheng, “Part I: characterization of solid dispersions of nimodipine prepared by hot-melt extrusion,” Drug Development and Industrial Pharmacy, vol. 33, no. 7, pp. 791–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. S. Jana and R. Miloslava, “Hot-melt extrusion,” Ceská a Slovenská Farmacie, vol. 61, no. 3, pp. 87–92, 2012. View at Google Scholar
  31. F. Cilurzo, I. E. Cupone, P. Minghetti, F. Selmin, and L. Montanari, “Fast dissolving films made of maltodextrins,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 3, pp. 895–900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Zhang and J. W. McGinity, “Properties of sustained-release tablets prepared by hot-melt extrusion,” Pharmaceutical Development and Technology, vol. 4, no. 2, pp. 241–250, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Crowley, F. Zhang, J. J. Koleng, and J. W. McGinity, “Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion,” Biomaterials, vol. 23, no. 21, pp. 4241–4248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Breitkreutz, F. El-Saleh, C. Kiera, P. Kleinebudde, and W. Wiedey, “Pediatric drug formulations of sodium benzoate: II. Coated granules with a lipophilic binder,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 2, pp. 255–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. De Brabander, C. Vervaet, L. Fiermans, and J. P. Remon, “Matrix mini-tablets based on starch/microcrystalline wax mixtures,” International Journal of Pharmaceutics, vol. 199, no. 2, pp. 195–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. C. De Brabander, C. Vervaet, and J. P. Remon, “Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion,” Journal of Controlled Release, vol. 89, no. 2, pp. 235–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Roblegg, E. Jäger, A. Hodzic et al., “Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 79, pp. 635–645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. R. Clark, T. J. Johnson, R. T. McCabe et al., “A hot-melt extruded intravaginal ring for the sustained delivery of the antiretroviral microbicide UC781,” Journal of Pharmaceutical Sciences, vol. 101, no. 2, pp. 576–587, 2012. View at Google Scholar
  39. L. Li, O. AbuBaker, and Z. Shao, “Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion,” Drug Development and Industrial Pharmacy, vol. 32, no. 8, pp. 991–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Rambali, G. Verreck, L. Baert, and D. L. Massar, “Itraconazole formulation studies of the melt-extrusion process with mixture design,” Drug Development and Industrial Pharmacy, vol. 29, no. 6, pp. 641–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Six, H. Berghmans, C. Leuner et al., “Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II,” Pharmaceutical Research, vol. 20, no. 7, pp. 1047–1054, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Six, T. Daems, J. De Hoon et al., “Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion,” European Journal of Pharmaceutical Sciences, vol. 24, no. 2-3, pp. 179–186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Gryczke, S. Schminke, M. Maniruzzaman, J. Beck, and D. Douroumis, “Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion,” Colloids and Surfaces B, vol. 86, no. 2, pp. 275–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. J. Chokshi, N. H. Shah, H. K. Sandhu, A. W. Malick, and H. Zia, “Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration,” Journal of Pharmaceutical Sciences, vol. 97, no. 6, pp. 2286–2298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. G. P. Andrews, D. S. Jones, O. A. Diak, C. P. McCoy, A. B. Watts, and J. W. McGinity, “The manufacture and characterisation of hot-melt extruded enteric tablets,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 264–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Mehuys, J. P. Remon, and C. Vervaet, “Production of enteric capsules by means of hot-melt extrusion,” European Journal of Pharmaceutical Sciences, vol. 24, no. 2-3, pp. 207–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. D. A. Miller, J. T. McConville, W. Yang, R. O. Williams, and J. W. McGinity, “Hot-melt extrusion for enhanced delivery of drug particles,” Journal of Pharmaceutical Sciences, vol. 96, no. 2, pp. 361–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Verreck, A. Decorte, K. Heymans et al., “Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer,” International Journal of Pharmaceutics, vol. 327, no. 1-2, pp. 45–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Douroumis, “Practical approaches of taste masking technologies in oral solid forms,” Expert Opinion on Drug Delivery, vol. 4, no. 4, pp. 417–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Douroumis, “Orally disintegrating dosage forms and taste-masking technologies,” Expert Opinion on Drug Delivery, vol. 8, no. 5, pp. 665–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Witzleb, V. R. Kanikanti, H. J. Hamann, and P. Kleinebudde, “Solid lipid extrusion with small die diameters—electrostatic charging, taste masking and continuous production,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, pp. 170–177, 2011. View at Google Scholar
  52. J. Vaassena, K. Bartscherb, and J. Breitkreutza, “Taste masked lipid pellets with enhanced release of hydrophobic active ingredient,” International Journal of Pharmaceutics, vol. 429, pp. 99–103, 2012. View at Google Scholar
  53. J. C. Gutierrez-Rocca and J. W. McGinity, “Influence of aging on the physical-mechanical properties of acrylic resin films cast from aqueous dispersions and organic solutions,” Drug Development and Industrial Pharmacy, vol. 19, no. 3, pp. 315–332, 1993. View at Google Scholar · View at Scopus
  54. C. R. Steuernagel, “Latex emulsions for controlled drug delivery,” in Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, J. W. McGinity, Ed., vol. 79, Marcel Dekker, New York, NY, USA, 1997. View at Google Scholar
  55. S. Barnhart, “Thin film oral dosage forms,” in Modified-Release Drug Delivery Technology, M. J. Rathbone, J. Hadgraft, M. S. Roberts, and M. E. Lane, Eds., pp. 209–216, Informa Healthcare, 2008. View at Google Scholar
  56. “February 2009, ICH topic Q3C (R3) impurities: residual solvents,” International Conference on Harmonization, http://www.emea.europa.eu/pdfs/human/ich/028395en.pdf.
  57. C. R. Palem, B. S. Kumar, S. Maddineni, R. Gannu, M. A. Repka, and M. R. Yamsani, “Oral transmucosal delivery of domperidone from immediate release films produced via hotmelt extrusion technology,” Pharmaceutical Developments and Technology. In press.
  58. M. A. Repka, J. W. McGinity, F. Zhang, and J. J. Koleng, Encyclopedia of Pharmaceutical Technology, Marcel Dekker, NewYork, NY, USA, 2002.
  59. V. S. Tumuluri, M. S. Kemper, I. R. Lewis et al., “Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy,” International Journal of Pharmaceutics, vol. 357, no. 1-2, pp. 77–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Prodduturi, R. V. Manek, W. M. Kolling, S. P. Stodghill, and M. A. Repka, “Solid-state stability and characterization of hot-melt extruded poly(ethylene oxide) films,” Journal of Pharmaceutical Sciences, vol. 94, no. 10, pp. 2232–2245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Repka, K. Gutta, S. Prodduturi, M. Munjal, and S. P. Stodghill, “Characterization of cellulosic hot-melt extruded films containing lidocaine,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 1, pp. 189–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Repka and J. W. McGinity, “Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion,” Journal of Controlled Release, vol. 70, no. 3, pp. 341–351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Thumma, S. Majumdar, M. A. ElSohly, W. Gul, and M. A. Repka, “Preformulation studies of a prodrug of Δ9-tetrahydrocannabinol,” AAPS PharmSciTech, vol. 9, no. 3, pp. 982–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. A. Repka, T. G. Gerding, S. L. Repka, and J. W. McGinity, “Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion,” Drug Development and Industrial Pharmacy, vol. 25, no. 5, pp. 625–633, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Prodduturi, R. V. Manek, W. M. Kolling, S. P. Stodghill, and M. A. Repka, “Water vapor sorption of hot-melt extruded hydroxypropyl cellulose films: effect on physico-mechanical properties, release characteristics, and stability,” Journal of Pharmaceutical Sciences, vol. 93, no. 12, pp. 3047–3056, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Kopcha, K. J. Tojo, and N. G. Lordi, “Evaluation of methodology for assessing release characteristics of thermosoftening vehicles,” Journal of Pharmacy and Pharmacology, vol. 42, no. 11, pp. 745–751, 1990. View at Google Scholar · View at Scopus
  67. S. Thumma, M. A. ElSohly, S. Q. Zhang, W. Gul, and M. A. Repka, “Influence of plasticizers on the stability and release of a prodrug of Δ9-tetrahydrocannabinol incorporated in poly (ethylene oxide) matrices,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 2, pp. 605–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. P. K. Mididoddi and M. A. Repka, “Characterization of hot-melt extruded drug delivery systems for onychomycosis,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 66, no. 1, pp. 95–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Wilson, M. A. Williams, D. S. Jones, and G. P. Andrews, “Hot-melt extrusion technology and pharmaceutical application,” Therapeutic Delivery, vol. 3, no. 6, pp. 787–797, 2012. View at Google Scholar
  70. C. E. Klein, Y. L. Chiu, W. Awni et al., “The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect,” Journal of Acquired Immune Deficiency Syndromes, vol. 44, no. 4, pp. 401–410, 2007. View at Publisher · View at Google Scholar · View at Scopus