Table of Contents
ISRN Forestry
Volume 2012, Article ID 437690, 8 pages
http://dx.doi.org/10.5402/2012/437690
Research Article

Silver Fir Defoliation Likelihood Is Related to Negative Growth Trends and High Warming Sensitivity at Their Southernmost Distribution Limit

1Área de Ecología, Universidad Pablo de Olavide, Ctra. de Utrera Km 1, 41002 Sevilla, Spain
2Departamento Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Sevilla, Spain
3ARAID, Instituto Pirenaico de Ecología (CSIC), Avenida Montañana 1005, 50192 Zaragoza, Spain

Received 30 August 2012; Accepted 16 October 2012

Academic Editors: J. F. Negron, S. Sun, A. M. Vettraino, and M. Vitale

Copyright © 2012 Juan Carlos Linares and J. Julio Camarero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Bigler, D. G. Gavin, C. Gunning, and T. T. Veblen, “Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains,” Oikos, vol. 116, no. 12, pp. 1983–1994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Greenwood and P. J. Weisberg, “Density-dependent tree mortality in pinyon-juniper woodlands,” Forest Ecology and Management, vol. 255, no. 7, pp. 2129–2137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Dobbertin, “Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review,” European Journal of Forest Research, vol. 124, no. 4, pp. 319–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Manion, Tree Disease Concepts, Prentice-Hall, Englewood Cliffs, NJ, USA, 1991.
  5. B. S. Pedersen, “Modeling tree mortality in response to short- and long-term environmental stresses,” Ecological Modelling, vol. 105, no. 2-3, pp. 347–351, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Litton, J. W. Raich, and M. G. Ryan, “Carbon allocation in forest ecosystems,” Global Change Biology, vol. 13, no. 10, pp. 2089–2109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wunder, B. Reineking, C. Bigler, and H. Bugmann, “Predicting tree mortality from growth data: how virtual ecologists can help real ecologists,” Journal of Ecology, vol. 96, no. 1, pp. 174–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Van Mantgem, N. L. Stephenson, L. S. Mutch, V. G. Johnson, A. M. Esperanza, and D. J. Parsons, “Growth rate predicts mortality of Abies concolor in both burned and unburned stands,” Canadian Journal of Forest Research, vol. 33, no. 6, pp. 1029–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. H. Wyckoff and J. S. Clark, “Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches,” Canadian Journal of Forest Research, vol. 30, no. 1, pp. 156–167, 2000. View at Google Scholar · View at Scopus
  10. R. G. Buchman, S. P. Pederson, and N. R. Walters, “A tree survival model with application to species of the Great Lakes region,” Canadian Journal of Forest Research, vol. 13, pp. 601–608, 1983. View at Google Scholar
  11. R. K. Kobe and K. D. Coates, “Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia,” Canadian Journal of Forest Research, vol. 27, no. 2, pp. 227–236, 1997. View at Google Scholar · View at Scopus
  12. A. J. Das, J. J. Battles, N. L. Stephenson, and P. J. Van Mantgem, “The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada,” Canadian Journal of Forest Research, vol. 37, no. 3, pp. 580–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Linares, J. J. Camarero, and J. A. Carreira, “Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo,” Journal of Ecology, vol. 98, no. 3, pp. 592–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. S. Phdersen, “The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death,” Ecology, vol. 79, no. 1, pp. 79–93, 1998. View at Google Scholar · View at Scopus
  15. K. Ogle, T. G. Whitham, and N. S. Cobb, “Tree-ring variation in pinyon predicts likelihood of death following severe drought,” Ecology, vol. 81, no. 11, pp. 3237–3243, 2000. View at Google Scholar · View at Scopus
  16. C. Bigler, J. Gričar, H. Bugmann, and K. Čufar, “Growth patterns as indicators of impending tree death in silver fir,” Forest Ecology and Management, vol. 199, no. 2-3, pp. 183–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Camarero, “El decaimiento del abeto en los Pirineos,” Medio Ambiente Aragón, vol. 4, pp. 18–20, 2000. View at Google Scholar
  18. J. Linares and J. J. Camarero, “Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees,” European Journal of Forest Research, vol. 131, pp. 1001–1012, 2012. View at Google Scholar
  19. S. Chauchard, F. Beilhe, N. Denis, and C. Carcaillet, “An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon,” Forest Ecology and Management, vol. 259, no. 8, pp. 1406–1415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Cabrera, “Evolución de abetares del Pirineo aragonés,” Cuadernos de la Sociedad Española de Ciencias Forestales, vol. 11, pp. 43–52, 2001. View at Google Scholar
  21. J. J. Camarero, A. Padró, E. Martín-Bernal, and E. Gil-Pelegrín, “Aproximación dendroecológica al decaimiento del abeto (Abies alba Mill.) en el pirineo Aragonés,” Montes, vol. 70, pp. 26–33, 2002. View at Google Scholar
  22. E. H. R. Müller and H. R. Stierlin, Sanasilva Tree Crown Photos With Percentages of Foliage Loss WSL, Birmensdorf, 1990.
  23. J. J. Camarero, C. Bigler, J. C. Linares, and E. Gil-Pelegrín, “Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests,” Forest Ecology and Management, vol. 262, no. 5, pp. 759–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. L. Holmes, Dendrochronology Program Library Laboratory of Tree-Ring Research,, University of Arizona, Tucson, Ariz, USA, 1992.
  25. C. J. Willmott, C. M. Rowe, and Y. Mintz, “Climatology of the terrestrial seasonal water cycle,” Journal of Climatology, vol. 5, no. 6, pp. 589–606, 1985. View at Google Scholar · View at Scopus
  26. T. B. McKee, N. J. Doesken, and J. Kleist, “Drought monitoring with multiple timescales Paper presented at the Preprints,” in Proceedings of the 8th Conference on Applied Climatology, Anaheim, Calif, USA, 1993.
  27. D. C. Edwards and T. B. McKee, Characteristics of 20th Century Drought in the United States at Multiple Time Scales, Department of Atmospheric Science, Colorado State University, Fort Collins, Colo, USA, 1997.
  28. I. Bordi, S. Frigio, P. Parenti, A. Speranza, and A. Sutera, “The analysis of the Standardized Precipitation Index in the Mediterranean area: large-scale patterns,” Annals of Geophysics, vol. 44, no. 5-6, pp. 965–978, 2001. View at Google Scholar · View at Scopus
  29. H. C. Fritts, Rings and Climate, Academic Press, London, UK, 1976.
  30. R. L. Holmes, “Computer-assisted quality control in tree-ring dating and measurement,” Tree-Ring Bulletin, pp. 68–78, 1983. View at Google Scholar
  31. F. Biondi and F. Qeadan, “A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment,” Tree-Ring Research, vol. 64, no. 2, pp. 81–96, 2008. View at Google Scholar · View at Scopus
  32. C. Bigler and H. Bugmann, “Predicting the time of tree death using dendrochronological data,” Ecological Applications, vol. 14, no. 3, pp. 902–914, 2004. View at Google Scholar · View at Scopus
  33. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011, http://www.R-project.org.
  34. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley Interscience, New York, NY, USA, 1989.
  35. D. Collett, Modelling Binary Data, Chapman and Hall, London, UK, 1991.
  36. Y. Miyamoto, H. P. Griesbauer, and D. Scott Green, “Growth responses of three coexisting conifer species to climate across wide geographic and climate ranges in Yukon and British Columbia,” Forest Ecology and Management, vol. 259, no. 3, pp. 514–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Galiano, J. Martínez-Vilalta, and F. Lloret, “Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species,” Ecosystems, vol. 13, no. 7, pp. 978–991, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Linares, A. Delgado-Huertas, and J. A. Carreira, “Climatic trends and different drought adaptive capacity and vulnerability in a mixed Abies pinsapo-Pinus halepensis forest,” Climatic Change, vol. 105, no. 1, pp. 67–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Bigler, O. U. Bräker, H. Bugmann, M. Dobbertin, and A. Rigling, “Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland,” Ecosystems, vol. 9, no. 3, pp. 330–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. R. H. Waring, “Characteristics of trees predisposed to die,” BioScience, vol. 37, pp. 569–574, 1987. View at Google Scholar
  41. R. Villalba and T. T. Veblen, “Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia,” Ecology, vol. 79, no. 8, pp. 2624–2640, 1998. View at Google Scholar · View at Scopus
  42. J. F. Franklin, H. H. Shugart, and M. E. Harmon, “Tree death as an ecological process,” BioScience, vol. 37, pp. 550–556, 1987. View at Google Scholar
  43. P. J. Van Mantgem, N. L. Stephenson, J. C. Byrne et al., “Widespread increase of tree mortality rates in the Western United States,” Science, vol. 323, no. 5913, pp. 521–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Bigler and H. Bugmann, “Assessing the performance of theoretical and empirical tree mortality models using tree-ring series of Norway spruce,” Ecological Modelling, vol. 174, no. 3, pp. 225–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. C. Linares and P. A. Tíscar, “Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii,” Tree Physiology, vol. 30, no. 7, pp. 795–806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Torelli, W. C. Shortle, K. Cufar, F. Ferlin, and K. T. Smith, “Detecting changes in tree health and productivity of silver fir in Slovenia,” European Journal of Forest Pathology, vol. 29, no. 3, pp. 189–197, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Carrer, P. Nola, R. Motta, and C. Urbinati, “Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area,” Oikos, vol. 119, no. 9, pp. 1515–1525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Macias, L. Andreu, O. Bosch, J. J. Camarero, and E. Gutiérrez, “Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit,” Climatic Change, vol. 79, no. 3-4, pp. 289–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Aussenac, “Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change,” Annals of Forest Science, vol. 59, no. 8, pp. 823–832, 2002. View at Google Scholar · View at Scopus
  50. O. K. Atkin, D. Bruhn, V. M. Hurry, and M. G. Tjoelker, “The hot and the cold: unravelling the variable response of plant respiration to temperature,” Functional Plant Biology, vol. 32, no. 2, pp. 87–105, 2005. View at Publisher · View at Google Scholar · View at Scopus