Table of Contents
ISRN Organic Chemistry
Volume 2012, Article ID 474626, 4 pages
http://dx.doi.org/10.5402/2012/474626
Research Article

Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Their Corresponding 2(1H)Thiones Using Trichloroacetic Acid as a Catalyst under Solvent-Free Conditions

Department of Chemistry, Firoozabad Branch, Islamic Azad University, P.O. Box 74715-117, Firoozabad, Fars, Iran

Received 3 August 2012; Accepted 8 October 2012

Academic Editors: D.-M. Du and G. K. Patra

Copyright © 2012 Zahed Karimi-Jaberi and Mohammad Sadegh Moaddeli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Mahdavinia and H. Sepehrian, “MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction,” Chinese Chemical Letters, vol. 19, no. 12, pp. 1435–1439, 2008. View at Publisher · View at Google Scholar
  2. C. Jiang and Q. D. You, “An efficient and solvent-free one-pot synthesis of dihydropyrimidinones under microwave irradiation,” Chinese Chemical Letters, vol. 18, no. 6, pp. 647–650, 2007. View at Publisher · View at Google Scholar
  3. Y. Yu, D. Liu, C. Liu, and G. Luo, “2007One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst,” Bioorganic & Medicinal Chemistry Letters, vol. 17, no. 12, pp. 3508–3510, 2007. View at Publisher · View at Google Scholar
  4. S. Ghassamipour and A. R. Sardarian, “One-pot synthesis of dihydropyrimidinones by dodecylphosphonic acid as solid Bronsted acid catalyst under solvent-free conditions via Biginelli condensation,” Journal of the Iranian Chemical Society, vol. 7, pp. 237–242, 2010. View at Publisher · View at Google Scholar
  5. J. K. Joseph, S. L. Jain, and B. Sain, “Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones,” Journal of Molecular Catalysis A, vol. 247, no. 1-2, pp. 99–102, 2006. View at Publisher · View at Google Scholar
  6. M. M. Heravi, F. Derikvand, and F. F. Bamoharram, “A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2 (1H)-one using 12-tungstophosphoric acid,” Journal of Molecular Catalysis A, vol. 242, no. 1-2, pp. 173–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Y. Fu, Y. F. Yuan, Z. Cao, S. W. Wang, J. T. Wang, and C. Peppe, “Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction,” Tetrahedron, vol. 58, no. 24, pp. 4801–4807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor, and B. M. Bhanage, “Y(NO3)3·6H2O: a novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions,” Journal of Molecular Catalysis A, vol. 271, no. 1-2, pp. 14–17, 2007. View at Google Scholar
  9. C. O. Kappe, “Biologically active dihydropyrimidones of the Biginelli-type—a literature survey,” European Journal of Medicinal Chemistry, vol. 35, no. 12, pp. 1043–1052, 2000. View at Publisher · View at Google Scholar
  10. J. P. Wan and Y. Liu, “Synthesis of dihydropyrimidinones and thiones by multicomponent reactions: strategies beyond the classical Biginelli reaction,” Synthesis, vol. 23, pp. 3943–3953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Adibi, H. A. Samimi, and M. Beygzadeh, “Iron(III) trifluoroacetate and trifluoromethanesulfonate: recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols,” Catalysis Communications, vol. 8, no. 12, pp. 2119–2124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Salim and K. G. Akamanchi, “Sulfated tungstate: an alternative, eco-friendly catalyst for Biginelli reaction,” Catalysis Communications, vol. 12, no. 12, pp. 1153–1156, 2011. View at Publisher · View at Google Scholar
  13. M. Litvic, I. Vecenaj, Z. M. Ladisic, M. Lovric, V. Vinkovic, and M. F. Litvic, “First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: a simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction,” Tetrahedron, vol. 66, no. 19, pp. 3463–3471, 2010. View at Publisher · View at Google Scholar
  14. M. A. Bigdeli, G. Gholami, and E. Sheikhhosseini, “P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli reaction in water and under solvent free conditions,” Chinese Chemical Letters, vol. 22, no. 8, pp. 903–906, 2011. View at Publisher · View at Google Scholar
  15. P. G. Mandhane, R. S. Joshi, D. R. Nagargoje, and C. H. Gill, “An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by thiamine hydrochloride in water under ultrasound irradiation,” Tetrahedron Letters, vol. 51, no. 23, pp. 3138–3140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Y. Wu, Z. Chai, X. Y. Liu, G. Zhao, and S. W. Wang, “Synthesis of substituted 5-(Pyrrolidin-2-yl)tetrazoles and their application in the asymmetric Biginelli reaction,” European Journal of Organic Chemistry, vol. 2009, no. 6, pp. 904–911, 2009. View at Google Scholar
  17. X. H. Chen, X. Y. Xu, H. Liu, L. F. Cun, and L. Z. Gong, “Highly enantioselective organocatalytic Biginelli reaction,” Journal of the American Chemical Society, vol. 128, no. 46, pp. 14802–14803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Bose, L. Fatima, and H. B. Mereyala, “Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction:  comparison of ethanol, water, and solvent-free conditions,” Organic Chemistry, vol. 68, no. 2, pp. 587–590, 2003. View at Publisher · View at Google Scholar
  19. J. Wannberg, D. Dallinger, C. O. Kappe, and M. Larhed, “Microwave-enhanced and metal-catalyzed functionalizations of the 4-aryl-dihydropyrimidone template,” Journal of Combinatorial Chemistry, vol. 7, no. 4, pp. 574–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. V. N. S. Srinivas and B. Das, “Iodine catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones: a simple and efficient procedure for the Biginelli reaction,” Synthesis, no. 13, pp. 2091–2093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. I. S. Zorkun, S. Sarac, S. C. Elebi, and K. Erol, “Synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blockers,” Bioorganic & Medicinal Chemistry, vol. 14, no. 24, pp. 8582–8589, 2006. View at Publisher · View at Google Scholar
  22. Y. Zhu, Y. Pan, and S. Huang, “Trimethylsilyl chloride: a facile and efficient reagent for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Synthetic Communications, vol. 34, pp. 3167–3174, 2004. View at Publisher · View at Google Scholar
  23. Z. Karimi-Jaberi and M. M. ReyazoShams, “Trichloroacetic acid as a solid heterogeneous catalyst for the rapid synthesis of dihydropyrano[2,3- c ]pyrazoles under solvent-free conditions,” Heterocyclic Communications, vol. 17, p. 177, 2011. View at Google Scholar
  24. Z. Karimi-Jaberi, S. Z. Abbasi, B. Pooladian, and M. Jokar, “Efficient, one-pot synthesis of tetrahydrobenzo[a]xanthen-11-ones and dibenzo[a,j]xanthenes using trichloroacetic acid as a solid heterogeneous catalyst under solvent-free conditions,” E-Journal of Chemistry, vol. 8, p. 1895, 2011. View at Google Scholar
  25. Z. Karimi-Jaberi and L. Zarei, “Tris(hydrogensulfato)boron catalysed rapid synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions,” Journal of Chemical Research, vol. 36, pp. 194–196, 2012. View at Google Scholar
  26. Z. Karimi-Jaberi and B. Pooladian, “A facile synthesis of α, α′-bis(substituted benzylidene) cycloalkanones catalyzed by p-TSA under solvent-free conditions,” Green Chemistry Letters and Reviews, vol. 5, pp. 187–193, 2012. View at Publisher · View at Google Scholar
  27. Z. Karimi-Jaberi, M. Mardani, and M. Amiri, “Green, one-pot synthesis of α-aminophosphonates catalyzed by ZnI2 at room temperature,” Green Processing and Synthesis, vol. 1, pp. 191–193, 2012. View at Publisher · View at Google Scholar