Table of Contents
ISRN Oncology
Volume 2012, Article ID 493283, 9 pages
http://dx.doi.org/10.5402/2012/493283
Review Article

Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

Molecular Medicine Program, Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, L320, Boston, MA 02118, USA

Received 9 October 2011; Accepted 30 October 2011

Academic Editors: A. Sapino, Y. Yamamoto, and Y. Yu

Copyright © 2012 Arthur W. Lambert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Muschler and C. H. Streuli, “Cell-matrix interactions in mammary gland development and breast cancer,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 10, p. a003202, 2010. View at Google Scholar
  2. M. J. Bissell and D. Radisky, “Putting tumours in context,” Nature Reviews Cancer, vol. 1, no. 1, pp. 46–54, 2001. View at Google Scholar · View at Scopus
  3. R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Visvader, “Cells of origin in cancer,” Nature, vol. 469, no. 7330, pp. 314–322, 2011. View at Google Scholar
  6. C. M. Nelson and M. J. Bissell, “Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 287–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Taddei, M. M. Faraldo, J. Teulière, M. A. Deugnier, J. P. Thiery, and M. A. Glukhova, “Integrins in mammary gland development and differentiation of mammary epithelium,” Journal of Mammary Gland Biology and Neoplasia, vol. 8, no. 4, pp. 383–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Schwartz and R. K. Assoian, “Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways,” Journal of Cell Science, vol. 114, no. 14, pp. 2553–2560, 2001. View at Google Scholar · View at Scopus
  9. S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Shaw, “Integrin function in breast carcinoma progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 4, no. 4, pp. 367–376, 1999. View at Google Scholar · View at Scopus
  11. M. L. Asselin-Labat, K. D. Sutherland, H. Barker et al., “Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation,” Nature Cell Biology, vol. 9, no. 2, pp. 201–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Pontier and W. J. Muller, “Integrins in mammary-stem-cell biology and breast-cancer progression—a role in cancer stem cells?” Journal of Cell Science, vol. 122, no. 2, pp. 207–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. C. Kordon and G. H. Smith, “An entire functional mammary gland may comprise the progeny from a single cell,” Development, vol. 125, no. 10, pp. 1921–1930, 1998. View at Google Scholar · View at Scopus
  14. M. Shackleton, F. Vaillant, K. J. Simpson et al., “Generation of a functional mammary gland from a single stem cell,” Nature, vol. 439, no. 7072, pp. 84–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Stingl, P. Eirew, I. Ricketson et al., “Purification and unique properties of mammary epithelial stem cells,” Nature, vol. 439, no. 7079, pp. 993–997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Lim, F. Vaillant, D. Wu et al., “Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers,” Nature Medicine, vol. 15, no. 8, pp. 907–913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Yang, H. Rayburn, and R. O. Hynes, “Embryonic mesodermal defects in α 5 integrin-deficient mice,” Development, vol. 119, no. 4, pp. 1093–1105, 1993. View at Google Scholar · View at Scopus
  18. B. L. Bader, H. Rayburn, D. Crowley, and R. O. Hynes, “Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins,” Cell, vol. 95, no. 4, pp. 507–519, 1998. View at Google Scholar · View at Scopus
  19. H. Gardner, J. Kreidberg, V. Koteliansky, and R. Jaenisch, “Deletion of integrin α 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion,” Developmental Biology, vol. 175, no. 2, pp. 301–313, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Kreidberg, M. J. Donovan, S. L. Goldstein et al., “α 3 β 1 integrin has a crucial role in kidney and lung organogenesis,” Development, vol. 122, no. 11, pp. 3537–3547, 1996. View at Google Scholar · View at Scopus
  21. E. Georges-Labouesse, N. Messaddeq, G. Yehia, L. Cadalbert, A. Dierich, and M. le Meur, “Absence of integrin α 6 leads to epidermolysis bullosa and neonatal death in mice,” Nature Genetics, vol. 13, no. 3, pp. 370–373, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Chen, T. G. Diacovo, D. G. Grenache, S. A. Santoro, and M. M. Zutter, “The α 2 integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis,” American Journal of Pathology, vol. 161, no. 1, pp. 337–344, 2002. View at Google Scholar · View at Scopus
  23. L. E. Stephens, A. E. Sutherland, I. V. Klimanskaya et al., “Deletion of β 1 integrins in mice results in inner cell mass failure and peri-implantation lethality,” Genes and Development, vol. 9, no. 15, pp. 1883–1895, 1995. View at Google Scholar · View at Scopus
  24. K. M. Hodivala-Dilke, K. P. McHugh, D. A. Tsakiris et al., “β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival,” Journal of Clinical Investigation, vol. 103, no. 2, pp. 229–238, 1999. View at Google Scholar · View at Scopus
  25. J. Dowling, Q. C. Yu, and E. Fuchs, “β4 Integrin is required for hemidesmosome formation, cell adhesion and cell survival,” Journal of Cell Biology, vol. 134, no. 2, pp. 559–572, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. T. C. Klinowska, J. V. Soriano, G. M. Edwards et al., “Laminin and β 1 integrins are crucial for normal mammary gland development in the mouse,” Developmental Biology, vol. 215, no. 1, pp. 13–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. M. Faraldo, M. A. Deugnier, M. Lukashev, J. P. Thiery, and M. A. Glukhova, “Perturbation of β1-integrin function alters the development of murine mammary gland,” The EMBO Journal, vol. 17, no. 8, pp. 2139–2147, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. T. C. M. Klinowska, C. M. Alexander, E. Georges-Labouesse et al., “Epithelial development and differentiation in the mammary gland is not dependent on α 3 or α 6 integrin subunits,” Developmental Biology, vol. 233, no. 2, pp. 449–467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. D. E. White, N. A. Kurpios, D. Zuo et al., “Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction,” Cancer Cell, vol. 6, no. 2, pp. 159–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Li, Y. Zhang, M. J. Naylor et al., “β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli,” The EMBO Journal, vol. 24, no. 11, pp. 1942–1953, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Naylor, N. Li, J. Cheung et al., “Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation,” Journal of Cell Biology, vol. 171, no. 4, pp. 717–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Taddei, M. A. Deugnier, M. M. Faraldo et al., “β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells,” Nature Cell Biology, vol. 10, no. 6, pp. 716–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. N. Nikolopoulos, P. Blaikie, T. Yoshioka, W. Guo, and F. G. Giancotti, “Integrin β4 signaling promotes tumor angiogenesis,” Cancer Cell, vol. 6, no. 5, pp. 471–483, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. K. Miranti and J. S. Brugge, “Sensing the environment: a historical perspective on integrin signal transduction,” Nature Cell Biology, vol. 4, no. 4, pp. E83–E90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Cabodi, M. Camacho-Leal, P. di Stefano, and P. Defilippi, “Integrin signalling adaptors: not only figurants in the cancer story,” Nature Reviews Cancer, vol. 10, no. 12, pp. 858–870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Miyamoto, H. Teramoto, J. S. Gutkind, and K. M. Yamada, “Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors,” Journal of Cell Biology, vol. 135, no. 6, part 1, pp. 1633–1642, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Soung, J. L. Clifford, and J. Chung, “Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression,” BMB Reports, vol. 43, no. 5, pp. 311–318, 2010. View at Google Scholar · View at Scopus
  38. R. Falcioni, A. Antonini, P. Nisticò et al., “α 6 β 4 and α 6 β 1 integrins associate with ErbB-2 in human carcinoma cell lines,” Experimental Cell Research, vol. 236, no. 1, pp. 76–85, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Moro, M. Venturino, C. Bozzo et al., “Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival,” The EMBO Journal, vol. 17, no. 22, pp. 6622–6632, 1998. View at Google Scholar · View at Scopus
  40. S. De, O. Razorenova, N. P. McCabe, T. O'Toole, J. Qin, and T. V. Byzova, “VEGF-Integrin interplay controls tumor growth and vascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7589–7594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. O. Yoon, S. Shin, and E. A. Lipscomb, “A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the α6β4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling,” Cancer Research, vol. 66, no. 5, pp. 2732–2739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Boudreau and M. J. Bissell, “Extracellular matrix signaling: integration of form and function in normal and malignant cells,” Current Opinion in Cell Biology, vol. 10, no. 5, pp. 640–646, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. K. E. Kadler, A. Hill, and E. G. Canty-Laird, “Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators,” Current Opinion in Cell Biology, vol. 20, no. 5, pp. 495–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. L. C. Plantefaber and R. O. Hynes, “Changes in integrin receptors on oncogenically transformed cells,” Cell, vol. 56, no. 2, pp. 281–290, 1989. View at Google Scholar · View at Scopus
  46. M. Pignatelli, M. R. Cardillo, A. Hanby, and G. W. H. Stamp, “Integrins and their accessory adhesion molecules in mammary carcinomas: loss of polarization in poorly differentiated tumors,” Human Pathology, vol. 23, no. 10, pp. 1159–1166, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Molyneux, F. C. Geyer, F. A. Magnay et al., “BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells,” Cell Stem Cell, vol. 7, no. 3, pp. 403–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. T. A. Proia, P. J. Keller, P. B. Gupta et al., “Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate,” Cell Stem Cell, vol. 8, no. 2, pp. 149–163, 2011. View at Publisher · View at Google Scholar
  50. K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof, “High expression level of α 6 integrin in human breast carcinoma is correlated with reduced survival,” Cancer Research, vol. 55, no. 4, pp. 901–906, 1995. View at Google Scholar · View at Scopus
  51. L. K. Diaz, M. Cristofanilli, X. Zhou et al., “β4 Integrin subunit gene expression correlates with tumor size and nuclear grade in early breast cancer,” Modern Pathology, vol. 18, no. 9, pp. 1165–1175, 2005. View at Publisher · View at Google Scholar
  52. T. Meyer, J. F. Marshall, and I. R. Hart, “Expression of αv integrins and vitronectin receptor identity in breast cancer cells,” British Journal of Cancer, vol. 77, no. 4, pp. 530–536, 1998. View at Google Scholar · View at Scopus
  53. M. M. Zutter, S. A. Santoro, W. D. Staatz, and Y. L. Tsung, “Re-expression of the α 2 β 1 integrin abrogates the malignant phenotype of breast carcinoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7411–7415, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Ichaso and S. M. Dilworth, “Cell transformation by the middle T-antigen of polyoma virus,” Oncogene, vol. 20, no. 54, pp. 7908–7916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Oktay, K. K. Wary, M. Dans, R. B. Birge, and F. G. Giancotti, “Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle,” Journal of Cell Biology, vol. 145, no. 7, pp. 1461–1469, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Guo, Y. Pylayeva, A. Pepe et al., “β 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis,” Cell, vol. 126, no. 3, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Lahlou, V. Sanguin-Gendreau, D. Zuo et al., “Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20302–20307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Marcotte, H. W. Smith, V. Sanguin-Gendreau, R. V. McDonough, and W. J. Muller, “Breast cancer special feature: mammary epithelial-specific disruption of c-Src impairs cell cycle progression and tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America. In press. View at Publisher · View at Google Scholar
  59. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Shackleton, E. Quintana, E. R. Fearon, and S. J. Morrison, “Heterogeneity in cancer: cancer stem cells versus clonal evolution,” Cell, vol. 138, no. 5, pp. 822–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. P. McDermott and M. S. Wicha, “Targeting breast cancer stem cells,” Molecular Oncology, vol. 4, no. 5, pp. 404–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Vaillant, M. L. Asselin-Labat, M. Shackleton, N. C. Forrest, G. J. Lindeman, and J. E. Visvader, “The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis,” Cancer Research, vol. 68, no. 19, pp. 7711–7717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Luo, H. Fan, T. Nagy et al., “Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells,” Cancer Research, vol. 69, no. 2, pp. 466–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. L. Guan, “Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer,” IUBMB Life, vol. 62, no. 4, pp. 268–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. I. J. Fidler, “The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited,” Nature Reviews Cancer, vol. 3, no. 6, pp. 453–458, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Bissell and W. C. Hines, “Why don't we get more cancer? a proposed role of the microenvironment in restraining cancer progression,” Nature Medicine, vol. 17, no. 3, pp. 320–329, 2011. View at Publisher · View at Google Scholar
  68. D. J. Webb, J. T. Parsons, and A. F. Horwitz, “Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again,” Nature Cell Biology, vol. 4, no. 4, pp. E97–E100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. P. J. Keely, J. K. Westwick, I. P. Whitehead, C. J. Der, and L. V. Parise, “Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K,” Nature, vol. 390, no. 6660, pp. 632–636, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. D. J. Sieg, C. R. Hauck, D. Ilic et al., “FAK integrates growth-factor and integrin signals to promote cell migration,” Nature Cell Biology, vol. 2, no. 5, pp. 249–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Massague, “TGFβ in Cancer,” Cell, vol. 134, no. 2, pp. 215–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. A. J. Galliher and W. P. Schiemann, “β3 Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells,” Breast Cancer Research, vol. 8, no. 4, article R42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. E. S. Radisky and D. C. Radisky, “Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 201–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. P. C. Brooks, S. Strömblad, L. C. Sanders et al., “Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ 3,” Cell, vol. 85, no. 5, pp. 683–693, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. O. Baum, R. Hlushchuk, A. Forster et al., “Increased invasive potential and up-regulation of MMP-2 in MDA-MB-231 breast cancer cells expressing the β 3 integrin subunit,” International Journal of Oncology, vol. 30, no. 2, pp. 325–332, 2007. View at Google Scholar · View at Scopus
  77. D. E. White and W. J. Muller, “Multifaceted roles of integrins in breast cancer metastasis,” Journal of Mammary Gland Biology and Neoplasia, vol. 12, no. 2-3, pp. 135–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Liapis, A. Flath, and S. Kitazawa, “Integrin α V β 3 expression by bone-residing breast cancer metastases,” Diagnostic Molecular Pathology B, vol. 5, no. 2, pp. 127–135, 1996. View at Google Scholar
  79. M. M. Zutter, G. Mazoujian, and S. A. Santoro, “Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast,” The American journal of pathology, vol. 137, no. 4, pp. 863–870, 1990. View at Google Scholar · View at Scopus
  80. B. Felding-Habermann, T. E. O'Toole, J. W. Smith et al., “Integrin activation controls metastasis in human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1853–1858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. J. S. Desgrosellier, L. A. Barnes, D. J. Shields et al., “An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression,” Nature Medicine, vol. 15, no. 10, pp. 1163–1169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. P. A. Muller, P. T. Caswell, B. Doyle et al., “Mutant p53 drives invasion by promoting integrin recycling,” Cell, vol. 139, no. 7, pp. 1327–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Zhang, X. Liu, A. Datta et al., “RCP is a human breast cancer-promoting gene with Ras-activating function,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2171–2183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Mehrotra, “IAP regulation of metastasis,” Cancer Cell, vol. 17, no. 1, pp. 53–64, 2010. View at Publisher · View at Google Scholar
  85. S. M. Srinivasula and J. D. Ashwell, “IAPs: what's in a name?” Molecular Cell, vol. 30, no. 2, pp. 123–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” The Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. C. J. Avraamides, B. Garmy-Susini, and J. A. Varner, “Integrins in angiogenesis and lymphangiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 604–617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011. View at Publisher · View at Google Scholar